SCH: Quantifying and mitigating demographic biases of machine learning in real world radiology
SCH:量化和减轻现实世界放射学中机器学习的人口统计偏差
基本信息
- 批准号:10818941
- 负责人:
- 金额:$ 31.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAlgorithmsAnatomyAreaArtificial IntelligenceBindingBreast Cancer DetectionCertificationChest imagingClinical/RadiologicComplementComplexDataData SetDevelopmentDiagnosisDiagnostic ImagingDiseaseDisparityEngineeringEnsureEthicsEvaluationExplosionFutureGenerationsHealthHealth PolicyImageIndividualInstructionKnowledgeLocationMachine LearningMalignant neoplasm of lungMeasuresMedical ImagingMedical centerMedicineMethodologyMethodsModernizationMonitorOutcomePerformancePopulationProceduresProxyPublic Health Applications ResearchRaceRadiology SpecialtyRecommendationResearchSamplingScienceScreening for cancerScreening procedureSeriesSystemTechnologyThoracic RadiographyTimeTrainingUnderrepresented PopulationsValidationaccess disparitiesalgorithmic biasartificial neural networkbiological sexbreast imagingcancer diagnosiscancer imagingclinically relevantdeep neural networkdemographicsdiagnostic accuracydiagnostic tooldisease classificationdisparity reductionhealth disparityhigh riskimaging modalityimprovedlung cancer screeningmachine learning algorithmmachine learning methodmachine learning modelmalignant breast neoplasmnovelpopulation basedprediction algorithmpredictive modelingpreventpublic health relevancereal world applicationscreeningscreening programtool
项目摘要
PROJECT SUMMARY (See instructions):
The application of modern machine learning algorithms in radiology continues to grow, as these tools
represent potential huge improvements in efficiency, accessibility and accuracy of diagnostic and
screening tools. At the same time, these increasingly complex machine learning models can have biased
predictions against individuals of under-represented demographic groups, potentially perpetuating
pre-existing health disparities. Such fairness concerns are particularly important in public health
applications that focus on large scale population-based screening, as in cancer screening for breast and
lung cancer. In these settings, it is paramount to understand how often machine learning screening
algorithms can be unfair and biased, and how to mitigate these disparities. This proposal will develop
tools to quantify, correct, and analyze the biases of predictive algorithms in relation to different
demographic groups in real world settings. In particular, we will develop analysis and algorithms to
quantify the violation of fairness by a machine learning model in situations where information about the
sensitive attribute itself (such as biological sex, race or age) are not directly observable, and we will
provide algorithms that correct for their worst-case fairness violations. We will analyze our tools under
distribution shifts, whereby differences in populations exist, as is common in large scale cancer screening
programs. This project will also perform inference on the training samples and features most highly
associated with fairness violations, thereby providing guidance on the development of solutions to prevent
biased algorithms in the future. Our tools will be validated on a variety of large real-world radiology
datasets spanning multiple imaging modalities, including general chest X-ray datasets that include lung
cancer diagnoses (CheXpert and MIMIC-CXR), as well as the Emory Breast Cancer Imaging Dataset
(EMBED) and the National Lung Cancer Screening Trial, evaluating and correcting disparities for
predictive algorithms with respect to biological sex (where appropriate), race, and age. The results of this
project will establish critical knowledge about the propensity of machine learning models for medical
imaging diagnosis and cancer screening to be unfair and biased, as well as foundational tools to quantify
and mitigate these biases in these potentially game-changing technologies.
项目总结(见说明):
现代机器学习算法在放射学中的应用持续增长,因为这些工具
代表着诊断的效率、可及性和准确性的潜在巨大改进,
筛选工具与此同时,这些日益复杂的机器学习模型可能会有偏差,
针对代表性不足的人口群体的个人的预测,可能会使
之前存在的健康差距。这种公平性问题在公共卫生领域尤其重要
专注于大规模基于人群的筛查的应用,例如乳腺癌筛查和
肺癌在这些环境中,了解机器学习筛选的频率至关重要
算法可能是不公平和有偏见的,以及如何减轻这些差异。该提案将发展
工具来量化,纠正和分析预测算法的偏见,
在真实的世界环境中的人口群体。特别是,我们将开发分析和算法,
量化机器学习模型在以下情况下对公平性的违反:
敏感属性本身(如生物性别,种族或年龄)是不能直接观察到的,我们将
提供算法来纠正最坏情况下的公平性违规。我们将分析我们的工具,
分布变化,从而存在人群差异,这在大规模癌症筛查中很常见
程序.该项目还将对训练样本和特征进行最高程度的推理
与违反公平有关,从而为制定解决方案提供指导,
有偏见的算法我们的工具将在各种大型现实世界的放射学上得到验证
跨多种成像模式的数据集,包括包含肺部的一般胸部X射线数据集
癌症诊断(CheXpert和MIMIC-CXR),以及Emory乳腺癌成像数据集
(EMBED)和国家肺癌筛查试验,评估和纠正
关于生物性别(在适当的情况下)、种族和年龄的预测算法。的结果
该项目将建立关于机器学习模型用于医疗的倾向的关键知识
影像诊断和癌症筛查是不公平和有偏见的,以及量化的基本工具,
并减轻这些可能改变游戏规则的技术中的偏见。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEREMIAS SULAM其他文献
JEREMIAS SULAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Continuing Grant
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Fellowship
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 31.85万 - 项目类别:
Directed Grant