Mapping Protein Interaction Networks Essential for Gonococcal Pathogenesis
绘制淋球菌发病机制所必需的蛋白质相互作用网络
基本信息
- 批准号:10814526
- 负责人:
- 金额:$ 59.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-06 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAntibiotic ResistanceAntibioticsArchitectureAutomobile DrivingAwarenessBacteriaBiologicalBiological AssayBiologyBiomedical ResearchCell AdhesionCellsClinicalCommunicable DiseasesCommunitiesComparative Genomic AnalysisComputer ModelsDependenceDevelopmentDiseaseDrug resistanceEnvironmentEscherichia coliEtiologyFemale genitaliaFoundationsFutureGene Expression ProfilingGenerationsGenetic ScreeningGenitalGenitaliaGenomeGenomic approachGenomicsGoalsGonorrheaGrantGrowthHealthHost resistanceHumanImmune EvasionIn VitroIncidenceInfectionInterdisciplinary StudyInterventionInvadedInvestigationKnowledgeKnowledge acquisitionLabelLifeMale Genital OrgansMapsMass Spectrum AnalysisMediatingMetabolicMetabolismMethodsMicrobeModelingMolecularMorbidity - disease rateMucous MembraneMutagenesisNeisseria gonorrhoeaeNutrientOutcomePathogenesisPathologicPathway AnalysisPhenotypePhysiologicalPhysiologyPopulationProcessProteinsProteomeProteomicsRecording of previous eventsResistanceResistance to infectionResourcesRoleSexually Transmitted AgentsSexually Transmitted DiseasesStressSuperbugSystemSystems BiologyTechnologyTherapeuticTherapeutic InterventionTransgenic MiceValidationVariantWorkchronic infectionclinically relevantcombatcommensal bacteriacomparativecomparative genomicsdrug developmentdrug discoveryexperimental studyfitnessfollow-upfrailtygene complementationhuman pathogenhumanized mouseimprovedin vivoinnovationinsightmacromoleculemicrobiomemouse modelpathogenpharmacologicprotein complexprotein protein interactionreproductive tractresearch studyresistant straintrendvalidation studies
项目摘要
Neisseria gonorrhoeae (Ngo) is the etiological agent of the sexually transmitted infection (STI) gonorrhea, a high
morbidity disease with ~100 million cases worldwide each year. Alarmingly, therapeutic and pharmacologic
approaches to treat gonorrhea are under threat by the global emergence of `superbug' strains resistant to all
clinically useful antibiotics. Gonococci are exquisitely adapted to life in humans, to the extent that they have shed
much of the metabolic capacity typical of other bacteria and depend upon unique strategies that allow for
replication and immune evasion while colonizing human mucosal tissues. Reflecting this specialization, Ngo
genomes encode less than half the number of proteins observed in more prototypical bacteria such as E. coli. A
biological enigma then is how the neisserial genome has evolved to exploit a variety of mucosal niches and how
strain variation contributes to pathogenesis. Our hypothesis is that this depends on specialized protein-protein
interaction networks, and that acquiring this knowledge will have major clinical value because it would reveal
protein complexes and processes uniquely required by gonococci but not commensal species, either because
they have distinct functional capabilities or because the smaller neisserial genome lacks functional redundancy
that allow other bacteria to overcome environmental or other stresses. The core goal of our multidisciplinary
research strategy is the generation of global protein interaction networks of gonococci that offer a detailed
systems-based understanding of the specialized cellular apparatus used by Ngo during infection. While
population genomic, transcriptional profiling and genetic screens have provided valuable insights into Ngo
biology, these studies would gain significant benefit through their integration with comprehensive roadmaps
detailing the organization of protein complexes that support growth and infection phenotypes. Key to the clinical
relevance of this project is a focus on the impact of strain variation through investigations of infectious clinical
isolates of Ngo, supported by complementary investigations of the population genomics of Ngo. We will combine
quantitative mass spectrometry, network analysis, comparative genomics and targeted mutagenesis with in vitro
and in vivo phenotype analysis to illuminate macromolecular protein assemblies that are critical to infection and
clinical persistence within the genital mucosa. By the end of this grant, we will have identified key conserved
components of the physical circuitry driving gonococcal growth, infection and adaptation to human mucosal
tissues, providing mechanistic insights into its unique pathobiology, and laying the foundation for future clinical
intervention strategies to combat infectious disease.
Neisseria Gonorrhoeae(NGO)是性传播感染(STI)淋病的病因学药
每年在全球范围内约有1亿例病例发病疾病。令人震惊的是,治疗和药理学
促淋病治疗的方法受到“超级咬合”菌株对所有人的抗性的威胁
临床上有用的抗生素。淋球菌非常适应人类的生命,以至于他们脱落了
其他细菌典型的代谢能力大部分,并依赖于允许的独特策略
复制和免疫逃避,同时定居于人粘膜组织。反映这种专业,非政府组织
基因组编码在更原型细菌(例如大肠杆菌)中观察到的蛋白质数量的一半。一个
然后,生物元素是奈瑟氏基因组如何进化以利用多种粘膜壁ni的发展以及如何发展
菌株变异有助于发病机理。我们的假设是这取决于专用蛋白质蛋白质
交互网络,而获取这些知识将具有主要的临床价值,因为它会揭示
蛋白质复合物和过程是淋球菌所要求的,而不是共生物种,也不是因为
它们具有独特的功能能力,或者因为较小的奈瑟氏基因组缺乏功能冗余
这允许其他细菌克服环境或其他压力。我们多学科的核心目标
研究策略是淋球菌的全球蛋白质相互作用网络的产生,该网络提供了详细的
非政府组织在感染过程中使用的专门细胞设备的基于系统的理解。尽管
人口基因组,转录分析和遗传筛选为非政府组织提供了宝贵的见解
生物学,这些研究将通过与全面路线图的整合而获得可观的好处
详细介绍支持生长和感染表型的蛋白质复合物的组织。临床的关键
该项目的相关性是通过调查感染性临床的菌株变异的影响
非政府组织的分离株,得到对非政府组织人群基因组学的补充研究的支持。我们将结合
定量质谱法,网络分析,比较基因组学和靶向诱变,并在体外
和体内表型分析,以阐明对感染至关重要的大分子蛋白质组件
生殖器粘膜内的临床持久性。在这笔赠款的结束时,我们将确定保存密钥
物理电路的组成部分驱动淋球菌生长,感染和对人粘膜的适应
组织,为其独特的病理生物学提供机械洞察力,并为将来的临床奠定基础
打击传染病的干预策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew EMILI其他文献
Andrew EMILI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew EMILI', 18)}}的其他基金
Identification and characterization of the CD31-ApoE-mCRP pathway for Alzheimer's disease in humans.
人类阿尔茨海默病 CD31-ApoE-mCRP 通路的鉴定和表征。
- 批准号:
10591027 - 财政年份:2022
- 资助金额:
$ 59.46万 - 项目类别:
Mapping Protein Interaction Networks Essential for Gonococcal Pathogenesis
绘制淋球菌发病机制所必需的蛋白质相互作用网络
- 批准号:
10401945 - 财政年份:2021
- 资助金额:
$ 59.46万 - 项目类别:
Genetic Modifiers of Protein Interaction Networks in Tauopathy
Tau 病中蛋白质相互作用网络的遗传修饰
- 批准号:
10386807 - 财政年份:2019
- 资助金额:
$ 59.46万 - 项目类别:
Genetic Modifiers of Protein Interaction Networks in Tauopathy
Tau 病中蛋白质相互作用网络的遗传修饰
- 批准号:
10654526 - 财政年份:2019
- 资助金额:
$ 59.46万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Interrogating human anti-staphylococcal antibody responses for S. aureus vaccine insights
探究人类抗葡萄球菌抗体反应以获得金黄色葡萄球菌疫苗见解
- 批准号:
10826874 - 财政年份:2023
- 资助金额:
$ 59.46万 - 项目类别:
Development of a model of Gonococcal conjunctivitis for vaccine evaluations
开发用于疫苗评估的淋菌性结膜炎模型
- 批准号:
10740430 - 财政年份:2023
- 资助金额:
$ 59.46万 - 项目类别:
Metabolic determinants of Staphylococcus aureus skin colonization
金黄色葡萄球菌皮肤定植的代谢决定因素
- 批准号:
10749745 - 财政年份:2023
- 资助金额:
$ 59.46万 - 项目类别:
Antifungal discovery from previously uncultivated bacteria
从以前未培养的细菌中发现抗真菌药物
- 批准号:
10693593 - 财政年份:2023
- 资助金额:
$ 59.46万 - 项目类别: