Progression of Entorhinal-hippocampal Spatial and Emotional Processing Deficits in a Mouse Model of Temporal Lobe Epilepsy
颞叶癫痫小鼠模型内嗅海马空间和情绪处理缺陷的进展
基本信息
- 批准号:10829101
- 负责人:
- 金额:$ 4.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffinity ChromatographyAnhedoniaAnimalsAnxietyAutomobile DrivingAwardBehaviorBehavioralBiological AssayBrainCalciumChronicCodeCognitive deficitsDataData AnalysesDevelopmentDiseaseDorsalEmotionalEmotionsEpilepsyFunctional disorderFutureGene ExpressionGeneticGoalsHippocampusImageImpairmentInterventionLearningLinear ModelsLinkLocationMedialMediatingMemoryMemory impairmentModelingMolecularMolecular ProfilingMusNeuronsPatientsPharmacological TreatmentPhasePilocarpinePopulationPostdoctoral FellowQuality of lifeRecurrenceResearchResearch PersonnelResistanceRibosomesRunningScientistSeizuresSignal TransductionSiteStressTechnical ExpertiseTechniquesTemporal LobeTemporal Lobe EpilepsyTestingTimeTrainingTranslatingViralWorkanxiety-like behaviorcareercell typeclinical phenotypecombinatorialcomorbiditydentate gyrusemotion regulationemotional behaviorentorhinal cortexexperimental studyhippocampal pyramidal neuronin vivo calcium imagingin vivo imaginginsightlarge scale datamolecular markermouse modelneuralneural circuitnovelprogramspsychiatric symptomskillsspatial memorystellate celltargeted treatmenttimelinetooltranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY
Temporal lobe epilepsy (TLE) is a debilitating disorder characterized by spontaneous and recurring seizures as
well as pervasive memory and psychiatric impairments. These TLE-induced comorbidities do not respond to
pharmacological treatment, and little is known about how specific brain circuits are altered by disease to drive
these clinical phenotypes. Recent evidence suggests that these comorbidities are driven by deficits along the
dorsoventral axis of the entorhinal-hippocampal circuit and that they are dissociable from seizures themselves.
As such, it is imperative to study how epilepsy may detrimentally alter temporal lobe circuitry that is a key node
in memory and emotion processing. In previous work, our lab and others have established CA1 of dorsal
hippocampus (dCA1) as a site of poor spatial processing in epileptic mice. However, it remains unclear if
upstream inputs to dCA1 are impaired which may be driving downstream changes in hippocampus. In the F99
phase, I will test the hypothesis that medial entorhinal cortex (MEC) has disrupted spatial coding in epileptic
mice and will specifically test how distinct hippocampal inputs from layer 3 (MECIII) pyramidal neurons and
layer 2 (MECII) stellate cells are altered. I will perform in vivo calcium imaging in these isolated subpopulations
as epileptic and control mice perform spatial foraging and memory tasks, both before and after the onset of
progressive memory impairments. This will allow me to determine the relationship between these spatial
coding metrics and progressive memory deficits found in epileptic mice. During this phase I will receive
technical training on in vivo calcium imaging and large-scale data analysis, as well as conceptual training on
epilepsy models, learning and memory circuits, spatial coding, and integrating neural recordings with behavior.
In the K00 phase, I plan to combine my previous expertise in stress-induced changes in entorhinal-
hippocampal signaling with my current work in epilepsy circuits to determine how the ventral extent of this
circuit contributes to altered emotional regulation in epilepsy. I will combine state-of-the-art mouse behavior,
molecular assays, gene expression studies, calcium imaging, and virally mediated manipulation techniques to
characterize ventral entorhinal-hippocampal circuit changes that drive psychiatric symptoms in epilepsy.
Results from these studies will provide new insights into the neural and circuit mechanisms of epilepsy induced
emotion deficits. Together, this training across F99 and K00 phases will support my successful transition to
postdoctoral researcher and ultimately a career as an independent research scientist focusing on molecular,
cellular, behavioral, and circuit-level signatures of behavioral dysfunction associated with epilepsy and stress.
项目概要
颞叶癫痫 (TLE) 是一种使人衰弱的疾病,其特征是自发性和反复发作:
以及普遍的记忆和精神障碍。这些 TLE 引起的合并症对
药物治疗,但人们对疾病如何改变特定的大脑回路来驱动汽车知之甚少。
这些临床表型。最近的证据表明,这些合并症是由沿途的缺陷引起的
内嗅海马回路的背腹轴,它们与癫痫发作本身是分离的。
因此,有必要研究癫痫如何有害地改变作为关键节点的颞叶电路
在记忆和情感处理中。在之前的工作中,我们实验室和其他人已经建立了背侧CA1
海马体(dCA1)是癫痫小鼠空间处理能力较差的部位。然而,目前尚不清楚是否
dCA1 的上游输入受损,这可能会驱动海马体的下游变化。在F99中
阶段,我将检验内侧内嗅皮层(MEC)破坏了癫痫患者的空间编码的假设
小鼠,将专门测试第 3 层 (MECIII) 锥体神经元的海马输入与
第 2 层 (MECII) 星状细胞发生改变。我将对这些孤立的亚群进行体内钙成像
当癫痫小鼠和对照小鼠在癫痫发作之前和之后执行空间觅食和记忆任务时
进行性记忆障碍。这将使我能够确定这些空间之间的关系
在癫痫小鼠中发现的编码指标和渐进性记忆缺陷。在此阶段我将收到
体内钙成像和大规模数据分析的技术培训以及概念培训
癫痫模型、学习和记忆回路、空间编码以及神经记录与行为的整合。
在 K00 阶段,我计划结合我之前在压力引起的内嗅变化方面的专业知识
海马信号传导与我目前在癫痫回路方面的工作,以确定这种情况的腹侧范围如何
电路有助于改变癫痫的情绪调节。我将结合最先进的鼠标行为,
分子测定、基因表达研究、钙成像和病毒介导的操作技术
表征导致癫痫精神症状的腹侧内嗅-海马回路变化。
这些研究的结果将为癫痫诱发的神经和回路机制提供新的见解
情绪缺陷。总之,这次跨 F99 和 K00 阶段的培训将支持我成功过渡到
博士后研究员,最终成为一名专注于分子、
与癫痫和压力相关的行为功能障碍的细胞、行为和回路水平特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Soler其他文献
Ivan Soler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 4.71万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 4.71万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 4.71万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 4.71万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 4.71万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 4.71万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 4.71万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 4.71万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




