Characterizing the underlying population code to understand the functional organization of the hippocampus and the lateral hypothalamus

表征潜在的群体代码以了解海马和下丘脑外侧的功能组织

基本信息

  • 批准号:
    10828039
  • 负责人:
  • 金额:
    $ 24.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Recent advancements in neural recording/imaging technologies and computational methods have generated a renewed interest in studying coordinated population activity. Understanding the population code can help us better understand the complex mechanisms behind substance use disorders (SUD). One leading idea is that high-dimensional neural activity, such as simultaneous recordings from hundreds to thousands of cells, can lie on low-dimensional manifolds, such that a handful of latent variables can accurately describe the activity of all recorded neurons. The lateral hypothalamus (LH) is a brain area well-known for its functional diversity – individual cells respond with great heterogeneity to a wide range of appetitive behaviors, and LH stimulation can evoke a variety of actions ranging from feeding to social interaction. This project proposes to use the latest nonlinear dimensionality reduction techniques to extract the low-dimensional manifolds representing population activity patterns that geometrically organize the heterogeneous single neuron activity. These manifolds can then be used to achieve this project’s main goal – differentiating LH neural population encoding of natural reward-seeking behaviors and maladaptive drug-seeking behaviors. In addition, novel computational modeling methods will be used to perform unsupervised detection of internal neural states that guide animals switching between these two reward-seeking behaviors. Finally, state-of-the-art cellular-resolution simultaneous stimulation and imaging microscopy will be used to casually perturb animal behavior and/or neural activity patterns by activating sequences of neurons along trajectories on the low-dimensional manifolds. Importantly, Aims 1 and 2 support these goals by offering training in the use of the necessary computational and instrumentation techniques. Ultimately, results obtained from this project will advance our understanding of the neural mechanisms separating harmful drug-seeking behaviors and useful natural reward-seeking behaviors, such that SUD treatments with more precise targets can be developed that minimize unwanted side effects.
项目总结/摘要 神经记录/成像技术和计算方法的最新进展已经产生了一种新的神经记录/成像方法。 重新对研究协调的人口活动产生兴趣。了解人口代码可以帮助我们 更好地了解物质使用障碍(SUD)背后的复杂机制。一个主要的想法是, 高维度的神经活动,例如同时记录数百到数千个细胞, 在低维流形上,这样少数的潜变量就可以准确地描述所有的活动。 记录神经元。外侧下丘脑(LH)是一个以其功能多样性而闻名的大脑区域-个体 细胞对广泛的食欲行为的反应具有很大的异质性,LH刺激可以引起 各种各样的行为,从喂养到社会互动。该项目建议使用最新的非线性 降维技术提取代表人口活动的低维流形 几何组织异质单神经元活动的模式。然后可以使用这些歧管 以实现本项目的主要目标-区分LH神经群体编码的自然奖励寻求 行为和适应不良的药物寻求行为。此外,新的计算建模方法将 用于执行内部神经状态的无监督检测,引导动物在这两种状态之间切换 寻求奖励的行为。最后,最先进的细胞分辨率同时刺激和成像 显微镜将被用于通过激活动物的行为和/或神经活动模式, 神经元序列沿着低维流形上的轨迹沿着。重要的是,目标1和2支持 通过提供使用必要的计算和仪器技术的培训,实现这些目标。 最终,从这个项目中获得的结果将促进我们对神经机制的理解 将有害的药物寻求行为和有益的自然奖赏寻求行为分开, 可以开发出具有更精确靶点的治疗方法,以使不希望的副作用最小化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Horng-An Edward Nieh其他文献

Horng-An Edward Nieh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Horng-An Edward Nieh', 18)}}的其他基金

Characterizing the underlying population code to understand the functional organization of the hippocampus and the lateral hypothalamus
表征潜在的群体代码以了解海马和下丘脑外侧的功能组织
  • 批准号:
    10580719
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Characterizing the underlying population code to understand the functional organization of the hippocampus and the lateral hypothalamus
表征潜在的群体代码以了解海马和下丘脑外侧的功能组织
  • 批准号:
    10371262
  • 财政年份:
    2022
  • 资助金额:
    $ 24.9万
  • 项目类别:
Characterization of Hippocampal Neural Activity in Evidence Accumulation and Decision-Making
海马神经活动在证据积累和决策中的表征
  • 批准号:
    10186824
  • 财政年份:
    2019
  • 资助金额:
    $ 24.9万
  • 项目类别:
Characterization of Hippocampal Neural Activity in Evidence Accumulation and Decision-Making
海马神经活动在证据积累和决策中的表征
  • 批准号:
    9760519
  • 财政年份:
    2019
  • 资助金额:
    $ 24.9万
  • 项目类别:
Characterization of Hippocampal Neural Activity in Evidence Accumulation and Decision-Making
海马神经活动在证据积累和决策中的表征
  • 批准号:
    9925650
  • 财政年份:
    2019
  • 资助金额:
    $ 24.9万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 24.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了