Multi-scale modeling of lymphatic vasculature growth and adaptation
淋巴管系统生长和适应的多尺度建模
基本信息
- 批准号:10829148
- 负责人:
- 金额:$ 7.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-12 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acquired Immunodeficiency SyndromeActive Biological TransportAffectAlzheimer&aposs DiseaseAmericanAnatomyAnimal ModelAntigensAreaAtherosclerosisAxillary Lymph Node DissectionBenchmarkingBiologicalBiomechanicsBloodBlood CirculationBrain DrainsCellsClinicalComplexComputer ModelsCongestive Heart FailureCoupledData SetDermisDevelopmentDiseaseDisease ProgressionDrainage procedureEnvironmentEquationEventExperimental Animal ModelExposure toExtracellular MatrixFailureFeedbackFibrosisFluid BalanceForce of GravityFundingGenerationsGeometryGraft RejectionGrantGrowthGrowth FactorHeadHindlimbHomeostasisHumanHypogravityHypoxiaImageImmuneImpairmentIndividualInfiltrationInflammationInflammatoryInflammatory ResponseInjuryIntercellular FluidIntestinesLegLengthLigationLimb structureLinkLipidsLiquid substanceLymphangiogenesisLymphaticLymphatic DiseasesLymphatic SystemLymphatic functionLymphedemaMacrophageMaintenanceMechanicsMediatingModelingMolecularMovementMultiple SclerosisMuscleMuscle TonusMuscular DystrophiesNitric OxideOperative Surgical ProceduresOrganParkinson DiseasePerformancePerfusionPhysiologicalPhysiologyPlayProcessProliferatingPropertyProteinsPublishingPumpRattusResearchRoleRouteSheepSpace FlightStreamStressStructureStructure-Activity RelationshipSystemTailTestingTimeTissuesVEGFC geneValidationVascular Endothelial Growth Factor CWorkangiogenesisbiological adaptation to stressbiomechanical testcancer therapycareercomputer frameworkcomputerized toolsdata modelingdata toolsexperimental studyinsightinterstitiallipid transportlymph nodeslymphatic circulationlymphatic pumplymphatic valvelymphatic vasculaturelymphatic vesselmechanical loadmechanical propertiesmodel developmentmulti-scale modelingmultiphoton microscopyneglectnervous system disordernovelnovel strategiesnovel therapeuticspressureproteostasisresponseshear stresstime intervalwound healing
项目摘要
The lymphatic vasculature provides crucial functions for the maintenance of homeostasis in a variety of tissues
and organs by providing the primary route through which immune cells, large proteins, lipids, and interstitial
fluid are returned to the blood circulation. This requires the movement of fluid up adverse pressure gradients, a
process that is achieved primarily through the intrinsic contractility of individual contractile units known as
lymphangions. Lymphatic pump failure has been implicated in a variety of disease processes including
lymphedema, congestive heart failure, transplant rejection, and neurological disorders. All of these processes
involve the growth and remodeling (G&R) of lymphatics as they adapt to changes directly from injury or to
changes in the fluid demand placed on them. These processes are quite complex involving molecular
mechanisms that adapt lymphatic function and structure across very short (seconds) and long (weeks) time
scales. These changes that occur at the cellular level alter pump function of individual vessels at the tissue
level, and ultimately could affect pump performance of the entire lymphatic network. Thus a multiscale model
that recapitulates these changes at the cellular level, integrating both the biological and mechanical variables
important to the cell response, and then predicts their impact on the entire lymphatic network will be crucial to
understanding disease progression and developing new therapies to restore lymphatic function. This proposal
seeks to develop such a model, through a collaborative effort of three co-PIs with complementary expertise,
utilizing both experiments and novel approaches in computational modeling. This will be achieved in the
following four Specific Aims: 1) Develop and characterize multiscale model of lymphangion G&R. This
model will describe G&R processes at the cellular level using a constrained mixture approach of the various
constituents that make of the vessel and the couple this into a lumped parameter model of long lymphangion
chains. 2) Develop and characterize a computational G&R fluid-structure-interaction (FSI) model of a
lymphatic valve. This model will develop an approach for capturing valve G&R processes through a coupled
constrained mixture model of valve growth with a FSI model of complex fluid-valve interactions. 3)
Incorporation of computational models of non-mechanically mediated growth. This aim will develop a
model of lymphangion growth driven by non-mechanically mediated factors coupled into the constitutive model
of mechanically mediated growth. 4) Validation of computational models with a large animal experimental
model relevant to human physiology. In humans, gravity is the primary mechanical load that the lymphatic
system must overcome; this load is absent in small animal models. Thus the computational models of G&R will
be benchmarked against a novel ligation model of the lymphatic in the leg of a sheep. Together this work will
provide a “human-scale” model of the lymphatic network that incorporates molecularly events of lymphatic
G&R and predicts the impact of these events on overall lymphatic system function.
淋巴血管系统为维持多种组织的内稳态提供了至关重要的功能
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of valve spacing on peristaltic pumping.
- DOI:10.1088/1748-3190/acbe85
- 发表时间:2023-03-09
- 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
Fluid pumping of peristaltic vessel fitted with elastic valves
装有弹性阀的蠕动容器的流体泵送
- DOI:10.1017/jfm.2021.302
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Wolf, Ki Tae;Dixon, J. Brandon;Alexeev, Alexander
- 通讯作者:Alexeev, Alexander
A 1D model characterizing the role of spatiotemporal contraction distributions on lymph transport.
- DOI:10.1038/s41598-023-48131-3
- 发表时间:2023-12-01
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Lymphatic injury alters the contractility and mechanosensitivity of collecting lymphatics to intermittent pneumatic compression.
淋巴损伤改变了收集淋巴管对间歇性气动压缩的收缩性和机械敏感性。
- DOI:10.1113/jp281206
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Mukherjee,Anish;Nepiyushchikh,Zhanna;Michalaki,Eleftheria;Dixon,JBrandon
- 通讯作者:Dixon,JBrandon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Alexeev其他文献
Alexander Alexeev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Alexeev', 18)}}的其他基金
Multi-scale modeling of lymphatic vasculature growth and adaptation
淋巴管系统生长和适应的多尺度建模
- 批准号:
10413145 - 财政年份:2020
- 资助金额:
$ 7.82万 - 项目类别:
Multi-scale modeling of lymphatic vasculature growth and adaptation
淋巴管系统生长和适应的多尺度建模
- 批准号:
10620701 - 财政年份:2020
- 资助金额:
$ 7.82万 - 项目类别:
Multi-scale modeling of lymphatic vasculature growth and adaptation
淋巴管系统生长和适应的多尺度建模
- 批准号:
10163258 - 财政年份:2020
- 资助金额:
$ 7.82万 - 项目类别:
Multi-scale modeling of lymphatic vasculature growth and adaptation
淋巴管系统生长和适应的多尺度建模
- 批准号:
10378174 - 财政年份:2020
- 资助金额:
$ 7.82万 - 项目类别:
Multi-scale modeling of lymphatic vasculature growth and adaptation
淋巴管系统生长和适应的多尺度建模
- 批准号:
10619898 - 财政年份:2020
- 资助金额:
$ 7.82万 - 项目类别:
Microfluidic Monitoring of Single Cell Elasticity, Viscoelasticity, and Plasticity
单细胞弹性、粘弹性和塑性的微流控监测
- 批准号:
9115597 - 财政年份:2015
- 资助金额:
$ 7.82万 - 项目类别:














{{item.name}}会员




