Engineered T cell-based imaging for glioblastoma and CAR-T cell tracking
基于工程 T 细胞的胶质母细胞瘤成像和 CAR-T 细胞追踪
基本信息
- 批准号:10826124
- 负责人:
- 金额:$ 65.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibodiesAntigen TargetingAntigensBindingBiological MonitoringCAR T cell therapyCD8B1 geneCancer DetectionCell NucleusCellsCessation of lifeClinical TrialsCompanionsDisease MarkerEngineeringEnsureExtracellular DomainFocused UltrasoundGenomicsGlioblastomaGliomaGoalsGrowth FactorHealthHistologicHumanImageImaging technologyImmuneImmune responseImmunologyIn VitroInterleukinsInterventionMalignant NeoplasmsMedicalMethodsModelingModern MedicineMolecularMolecular BiologyMonitorMonoclonal AntibodiesMusOperative Surgical ProceduresPatientsPenetrationPerformancePharmaceutical PreparationsPositioning AttributePositron-Emission TomographyProteinsProteolysisRadiology SpecialtyReporterReporter GenesResistanceSafetyScreening for cancerSensitivity and SpecificityShapesSignal TransductionSolid NeoplasmSpecificitySystemT cell therapyT-Cell ReceptorT-LymphocyteTechnologyTherapeuticThymidine KinaseTreatment EffectivenessTreatment EfficacyVisualizationWorkXenograft ModelXenograft procedureantigen-specific T cellsbiomedical imagingblood-brain barrier disruptionbrain tissuecancer therapychimeric antigen receptorchimeric antigen receptor T cellscytokinecytotoxicitydetection limitengineered T cellsepidermal growth factor receptor VIIIexperimental studyhuman diseaseimaging approachimaging biomarkerimaging modalityimaging platformimprovedin vivoinnovationinterdisciplinary collaborationleukemia/lymphomamigrationmolecular imagingmolecular markerneoplastic cellneurosurgerynon-invasive monitornoveloverexpressionpatient safetypotential biomarkerpre-clinicalradiologistreceptorresponsesynthetic biologytargeted treatmenttomographytooltranscription factortumor
项目摘要
Molecular biology, genomics, and immunology are revolutionizing modern medicine by uncovering key molecular
markers in human diseases. Imaging technologies that can directly visualize these markers, such as immune-
positron emission tomography (immunoPET), are at the forefront of such innovation, reshaping current medical
practice. In this proposal, we take advantage of both the superior targeting specificity of monoclonal antibodies
(mAb), and the amplification inherent in cell signaling by developing a T cell-based imaging method. Using
synthetic biology, we will develop engineered T cells with an antibody-derived chimeric receptor called “SNIPR”
that has an antigen-recognizing single-chain variable fragment (scFv) as an extracellular domain and an
engineered transcription factor as an intracellular domain. Upon binding its target antigen, SNIPR releases its
transcription factor, which migrates into the nucleus and induces the overexpression of various exogenous
reporter gene(s). This approach is fully customizable and versatile, and most importantly, can greatly enhance
sensitivity through multiple rounds of signal amplifications.
The main goals of this proposal are to establish the preclinical groundwork for SNIPR-PET in (1) visualizing early
glioblastoma and (2) tracking activated CAR T cells. In Aim 1, we will refine SNIPR T cells targeting EGFRvIII
and optimize SNIPR-PET reporter imaging strategies. In Aim 2, we will apply SNIPR-PET to the molecular
imaging of glioblastoma and compare its sensitivity and specificity with antibody-based immunoPET. In Aim 3,
we will image CD8+ therapeutic T cells, establish a correlation between PET signals and tumor response, and
enhance T cell penetration into brain tissues. The developed technologies will allow non-invasive monitoring of
biological/immunological responses within tumors, as potential biomarkers of successful therapy. This
collaborative proposal between Immunology, Radiology and Neurosurgery will provide a versatile and
customizable tool allowing cancer detection and treatment using engineered T cells.
Our proposal reflects a close interdisciplinary collaboration between Drs. Kole Roybal, (Immunology), David
Wilson (Radiology), and Hideho Okada (Neuroradiologic Surgery) at UCSF. Dr. Jaehoon Shin, an interventional
radiologist and molecular biologist, is another primary driver of this project- integrating molecular biology,
genomics, synthetic biology and biomedical imaging. We believe that our successful execution of the proposed
work will greatly impact human health by introducing novel T cell-based imaging to detect early cancers and to
enhance the safety profile of therapeutic T cells.
分子生物学、基因组学和免疫学正在通过揭示关键分子来彻底改变现代医学。
人类疾病的标志物。成像技术,可以直接可视化这些标志物,如免疫-
正电子发射断层扫描(immunoPET)处于这种创新的最前沿,重塑了当前的医疗
实践在这个建议中,我们利用单克隆抗体的上级靶向特异性
(mAb)以及通过开发基于T细胞的成像方法在细胞信号传导中固有的放大。使用
在合成生物学方面,我们将开发具有抗体衍生的嵌合受体的工程T细胞,称为“SNIPR”。
其具有作为胞外结构域的抗原识别单链可变片段(scFv)和
作为细胞内结构域的工程化转录因子。在结合其靶抗原后,SNIPR释放其
转录因子,其迁移到细胞核中并诱导各种外源性转录因子的过度表达。
报告基因。这种方法是完全可定制和通用的,最重要的是,可以大大提高
通过多轮信号放大提高灵敏度。
该提案的主要目标是建立SNIPR-PET的临床前基础,(1)早期可视化,
胶质母细胞瘤和(2)追踪活化的CAR T细胞。在目标1中,我们将改进靶向EGFRvIII的SNIPR T细胞,
并优化SNIPR-PET报告子成像策略。在目标2中,我们将SNIPR-PET应用于分子
成像胶质母细胞瘤,并比较其灵敏度和特异性与抗体为基础的免疫PET。在目标3中,
我们将对CD 8+治疗性T细胞进行成像,建立PET信号与肿瘤反应之间的相关性,
增强T细胞向脑组织的渗透。开发的技术将允许非侵入性监测
肿瘤内的生物学/免疫学反应,作为成功治疗的潜在生物标志物。这
免疫学,放射学和神经外科之间的合作提案将提供一个多功能,
可定制的工具,允许使用工程化T细胞进行癌症检测和治疗。
我们的建议反映了Kole Roybal博士(免疫学)、大卫博士(免疫学)和
Wilson(放射学)和Hideho Okada(神经放射外科)。Jaehoon Shin博士,一位介入医生,
放射科医生和分子生物学家,是这个项目的另一个主要驱动力-整合分子生物学,
基因组学、合成生物学和生物医学成像。我们相信,我们成功地执行了拟议的
这项工作将通过引入新的基于T细胞的成像来检测早期癌症,
增强治疗性T细胞的安全性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kole T Roybal其他文献
Kole T Roybal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 65.96万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 65.96万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 65.96万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 65.96万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 65.96万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 65.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 65.96万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 65.96万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 65.96万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 65.96万 - 项目类别: