Leveraging remote blood pressure monitoring and interpretable machine learning to improve clinical workflows for hypertensive disorders of pregnancy
利用远程血压监测和可解释的机器学习来改善妊娠期高血压疾病的临床工作流程
基本信息
- 批准号:10822625
- 负责人:
- 金额:$ 27.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-18 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAmerican College of Obstetricians and GynecologistsAspirinBayesian MethodBayesian learningBlood PressureBlood Pressure MonitorsCaringClinicalCommunicationCommunitiesComplexComputer softwareCounselingDataData SourcesDevelopmentDevicesDiagnosisDiscipline of obstetricsDocumentationEarly InterventionEarly identificationEclampsiaElectronic Health RecordElectronicsEligibility DeterminationFamilyFeedbackFirst Pregnancy TrimesterFocus GroupsFrequenciesFutureGeographyGrantGrowthHealthHomeHypertensionIncidenceInfantInterventionMachine LearningMeasurementMeasuresMedicalMethodsModelingMonitorNurse MidwivesOutcomePatient EducationPatient MonitoringPatient riskPatientsPerformancePersonsPhasePhenotypePre-EclampsiaPregnancyPrenatal careProphylactic treatmentProviderQualitative ResearchResearchRiskRisk FactorsRisk ReductionSmall Business Innovation Research GrantSystemTimeTrainingUltrasonographyUnited StatesUpdateVisitclinically actionabledashboarddesignelectronic health dataflexibilityimprovedlifestyle interventionmachine learning methodmachine learning modelmobile applicationmodel buildingnutritionpatient populationphase 1 studypredictive modelingpregnancy disorderpregnancy hypertensionpregnancy related deathpregnantprepregnancypreventprophylacticprospectivestandard of caretool
项目摘要
Project Summary/Abstract:
Hypertensive disorders of pregnancy (HDP) are a leading cause of pregnancy-related deaths in the United
States. Specific interventions, such as nutrition counseling and prophylactic aspirin use, are known to prevent
the onset and exacerbation of HDP. However, current approaches to identify patients early in pregnancy are
limited due to challenges collating patient data from the electronic health record (EHR) and low precision and
recall of traditional rules-based medical calculators. Machine learning (ML) methods that can flexibly capture
complex relationships between HDP risk factors offer a potential solution, but often only render a static
prediction at one time point and do not update as additional information is collected during pregnancy. The
objective of this project is to develop a clinically actionable machine learning model that updates dynamically
as patients track blood pressure throughout their pregnancies.
Specifically, in Aim 1, we will assess the increased predictive power of utilizing blood pressure
measurements arising from remote blood pressure monitoring (RBPM) as compared to in-office
measurements. We will phenotype patient blood pressure trajectories and investigate associations between
phenotypes and HDP diagnosis. In Aim 2, we will use a Bayesian machine learning approach to incorporate
the RBPM phenotypes developed in Aim 1 to enhance an existing static HDP model built on EHR data. The
developed model will be able to assess patients at multiple time points throughout their pregnancy based on
their at-home BP measures. Finally, in Aim 3, we will conduct a mixed-methods study with obstetricians and
certified nurse midwives to build a user-centered display that effectively communicates the results from the
dynamic model.
The project outlined in this proposal will give obstetricians a clinically interpretable tool – BotoML – to
help them identify patients that would benefit from intervention early in their pregnancy. The completion of
these aims will enable a future Phase II to deploy and prospectively validate BotoML in geographically diverse
provider and patient populations.
项目概要/摘要:
妊娠期高血压疾病(HDP)是美国妊娠相关死亡的主要原因。
States.具体的干预措施,如营养咨询和预防性使用阿司匹林,是众所周知的,以防止
HDP的发作和加重。然而,目前在怀孕早期识别患者的方法是
由于从电子健康记录(EHR)中整理患者数据的挑战和低精度,
传统的基于规则的医疗计算器的召回。机器学习(ML)方法,可以灵活地捕获
HDP风险因素之间的复杂关系提供了一个潜在的解决方案,但往往只是呈现静态的
在一个时间点进行预测,并且在妊娠期间收集额外信息时不会更新。的
该项目的目标是开发一个动态更新的临床可操作机器学习模型
因为患者在怀孕期间会跟踪血压。
具体而言,在目标1中,我们将评估利用血压增加的预测能力
远程血压监测(RBPM)产生的测量结果与诊室内测量结果相比
测量.我们将对患者的血压轨迹进行表型分析,并研究
表型和HDP诊断。在目标2中,我们将使用贝叶斯机器学习方法,
目标1中开发的RBPM表型,用于增强基于EHR数据构建的现有静态HDP模型。的
开发的模型将能够在整个妊娠期间的多个时间点评估患者,
他们的家庭血压测量最后,在目标3中,我们将与产科医生进行混合方法研究,
认证的护士助产士建立一个以用户为中心的显示,有效地沟通的结果,
动态模型
本提案中概述的项目将为产科医生提供一个临床可解释的工具- BotoML -以
帮助他们确定在怀孕早期就能从干预中受益的患者。完成
这些目标将使未来的第二阶段能够在地理上多样化的环境中部署和前瞻性地验证BotoML。
提供者和患者群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabel Fulcher其他文献
Isabel Fulcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
AMERICAN COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS PARTNERSHIP FOR FASD PREVENTION
美国妇产科学院合作预防胎儿酒精谱系障碍
- 批准号:
8849159 - 财政年份:2014
- 资助金额:
$ 27.57万 - 项目类别: