Point-of-care prognostic modeling of PTSD risk after traumatic event exposure using digital biomarkers and clinical data from electronic health records in the emergency department setting (PREDICT)

使用数字生物标志物和急诊科电子健康记录中的临床数据对创伤事件暴露后的 PTSD 风险进行护理点预后建模 (PREDICT)

基本信息

项目摘要

PROJECT SUMMARY/ ABSTRACT Currently, no accurate prognostic model of posttraumatic stress following trauma exposure for emergency department (ED) patients is available at the point-of-care without requiring clinical screening or diagnostic interviews. The proposed research is based on the rationale that the 139 million annual ED visits provide a critical window to proactively plan risk-based follow-up care at an early stage, where patients are still in contact with the health care system. While clinical interviews are still the gold standard to screen for acute stress symptoms following trauma exposure, their feasibility in clinical practice as routine screenings in the ED is severely limited given the acute care priorities in the ED. The long-term goal of the proposed research is to develop a prognostic model that is accurate, scalable, practical, and feasible with low additional burden on the highly taxed ED procedures. The overall objective is to use advanced computational methods to extract objective markers for posttraumatic stress from video and audio data to build a clinical readout at the point-of- care that will enable ED clinicians to prognosticate the risk for posttraumatic stress disorder (PTSD). Based on our preliminary data, we hypothesize that voice and speech content, head movement, pupil dilation, gaze, and facial landmark features of emotion provide probabilistic information that will allow us to identify digital biomarkers for PTSD. This hypothesis will be tested by pursuing two specific aims directed at analyzing digital biomarkers to predict 1) who is at risk to develop PTSD and 2) to combine digital biomarkers with routinely available electronic health records to predict at the point of care who will develop PTSD one month after ED discharge to plan follow-up specialty care and who is at risk for chronic PTSD. This proposed prospective longitudinal study will chart PTSD symptoms in a cohort of 350 trauma survivors. The proposed research is of high clinically significance. The prognostic model will facilitate risk-targeted early interventions for curtailing delayed treatment, assist clinicians in prioritizing treatment allocation and reduce downstream health care costs. This research project aims to deliver an objective, accurate, and reliable digital measure for patients’ well-being. Such digital biomarkers will enable more efficient discharge planning and will promote early prevention strategies. The mental besides the physical well-being of trauma-survivors admitted to the ED after a life-threatening event is of high value and is the foundation of a well-functioning, high-quality emergency care system. The SARS-CoV-2 pandemic, future disasters, or other large-scale emergencies underscore the critical need to support highly charged EDs through computational methods to better determine risks of long- term mental health care needs without disrupting the standard operating procedures of acute care.
项目摘要/摘要 目前,在外伤后没有精确的创伤后压力预后模型 部门(ED)患者在护理点上可用,而无需临床筛查或诊断 访谈。拟议的研究是基于这样的理由,即1.39亿届ED访问提供了 在早期阶段主动计划基于风险的后续护理的关键窗口,患者仍在接触中 与医疗保健系统。虽然临床访谈仍然是筛选急性压力的金标准 创伤暴露后的症状,它们在ED中的常规筛查为临床实践中的可行性为 鉴于ED中的急性护理优先级,受到严重限制。拟议研究的长期目标是 开发一个准确,可扩展,实用且可行的预后模型,在额外的燃烧较低的情况下 高度征税的ED程序。总体目的是使用高级计算方法提取 视频和音频数据的创伤后压力的客观标记,以在 - 建立临床读数 护理将使ED临床医生能够证明发生创伤后应激障碍(PTSD)的风险。 根据我们的初步数据,我们假设语音和语音内容,头部运动,学生词典, 凝视和情感的面部地标特征提供概率信息,使我们能够识别 PTSD的数字生物标志物。该假设将通过追求针对分析的两个具体目标来检验 数字生物标志物可以预测1)谁面临开发PTSD的风险和2)将数字生物标志物与 经常可用的电子健康记录将在护理点预测谁将开发PTSD一个月 ED出院后,以计划后续专业护理,并且有慢性PTSD的风险。这提出了 前瞻性纵向研究将在350个创伤生存的队列中绘制PTSD症状。提议 研究具有很高的临床意义。预后模型将有助于面临风险的早期干预措施 为了减少延迟治疗,请协助临床医生优先考虑治疗分配并减少下游 医疗保健费用。该研究项目旨在提供客观,准确且可靠的数字测量 病人的幸福。这样的数字生物标志物将实现更有效的排放计划,并将促进 早期预防策略。除了向ED承认的创伤活体的身体健康之外 经过威胁生命的事件具有很高的价值,是功能良好,高质量紧急的基础 护理系统。 SARS-COV-2大流行,未来灾难或其他大规模紧急情况强调了 通过计算方法支持高度充电的ED,以更好地确定长期的风险 一项术语心理保健需求,而不会破坏急性护理的标准操作程序。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katharina Schultebraucks其他文献

Katharina Schultebraucks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katharina Schultebraucks', 18)}}的其他基金

Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
  • 批准号:
    10298751
  • 财政年份:
    2021
  • 资助金额:
    $ 83.61万
  • 项目类别:
Early Signs: digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians
早期迹象:通过数字表型分析来识别数字生物标志物,以预测急诊临床医生的倦怠和认知功能
  • 批准号:
    10449250
  • 财政年份:
    2021
  • 资助金额:
    $ 83.61万
  • 项目类别:
Early Signs:digital phenotyping to identify digital biomarkers for predicting burnout and cognitive functioning in ED clinicians (Early Signs)
早期迹象:数字表型分析可识别数字生物标志物,用于预测 ED 临床医生的倦怠和认知功能(早期迹象)
  • 批准号:
    10884739
  • 财政年份:
    2021
  • 资助金额:
    $ 83.61万
  • 项目类别:

相似国自然基金

阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
  • 批准号:
    82302281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
  • 批准号:
    22304039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
  • 批准号:
    82300173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
  • 批准号:
    82360957
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Northern California Acute Care Research Consortium (NORCARES)
北加州急症护理研究联盟 (NORCARES)
  • 批准号:
    10552463
  • 财政年份:
    2023
  • 资助金额:
    $ 83.61万
  • 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
  • 批准号:
    10710712
  • 财政年份:
    2023
  • 资助金额:
    $ 83.61万
  • 项目类别:
Detecting Adolescent Suicidality Biometric Signals and Dynamic Variability with Wearable Technology
利用可穿戴技术检测青少年自杀生物特征信号和动态变异性
  • 批准号:
    10731651
  • 财政年份:
    2023
  • 资助金额:
    $ 83.61万
  • 项目类别:
Elucidating Non-Routine Events Arising from Interhospital Transfers
阐明院间转移引起的非常规事件
  • 批准号:
    10749448
  • 财政年份:
    2023
  • 资助金额:
    $ 83.61万
  • 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
  • 批准号:
    10584217
  • 财政年份:
    2023
  • 资助金额:
    $ 83.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了