Development of a Mobile Health Personalized Physiologic Analytics Tool for Pediatric Patients with Sepsis
为脓毒症儿科患者开发移动健康个性化生理分析工具
基本信息
- 批准号:10880477
- 负责人:
- 金额:$ 24.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-10 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAdmission activityAlgorithmsArtificial IntelligenceBangladeshCOVID-19CaringCellular PhoneCessation of lifeChildChild MortalityChildhoodClinicalClinical TrialsCommunicable DiseasesCritical CareCritical IllnessCritically ill childrenDataDetectionDeteriorationDevelopmentDevicesDiagnosticDiarrheaDiseaseDisease OutbreaksEarly DiagnosisEnrollmentEquipmentFunctional disorderFutureHealth PersonnelHealth protectionHospitalsImmune responseIndustryInfectionInfrastructureInterdisciplinary StudyInternationalKnowledgeLaboratoriesLifeLinkMachine LearningMalariaMalnutritionMedicalModelingMonitorMorbidity - disease rateMulti-Institutional Clinical TrialMultiple Organ FailureOrganOutcomePatient AdmissionPatient CarePatient MonitoringPatientsPhasePhysiologic MonitoringPhysiologicalPneumoniaPopulationProliferatingResearchResearch PersonnelResourcesRunningSafetyScientistSepsisSeptic ShockSeveritiesStratificationSystemTechniquesTechnologyTherapeutic InterventionTimeVariantacute infectionanalytical toolbaseclinical careclinical decision supportco-infectioncost effectivenessdiarrheal diseaseevidence basehealth traininghigh riskimplementation frameworkimprovedindividual patientinternational centerlow and middle-income countriesmHealthmortalitymortality risknovelnovel coronaviruspatient populationpatient responsepediatric patientspediatric sepsispreventprospectiveremote monitoringsepticskillstooltreatment responseusabilityuser centered designuser-friendlywearable devicewearable sensor technology
项目摘要
Project Summary
Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection,
encompasses a continuum that ranges from sepsis to severe sepsis, septic shock, multiple organ dysfunction
syndrome (MODS) and eventually death if untreated. Sepsis is the leading cause of child mortality worldwide,
with most of these deaths occurring in low and middle-income countries (LMICs) yet few clinical tools have
been developed for identifying, monitoring, or managing septic children in LMICs. There is immense potential
for novel clinical tools that can help clinicians more rapidly identify children with advanced stages of
sepsis (severe sepsis, septic shock and MODS), who are at highest risk for decompensation and death.
Mobile health (mHealth) tools, wearable devices, and artificial intelligence techniques have rapidly proliferated
for a multitude of medical applications and could serve to bridge the gap in care of critically ill patients in
LMIC settings. By enabling the detection of subtle physiologic changes indicating clinical deterioration, these
tools may allow clinicians to intervene earlier, better direct care, and allocate scarce resources, all without the
need for advanced laboratory diagnostics or critical care infrastructure. Furthermore, remote monitoring
capabilities may also prove highly valuable in improving patient care and protecting the safety of healthcare
workers during times of infectious disease outbreaks such as from novel coronavirus 2019 (COVID-19).
This proposed research will develop a context-appropriate mHealth tool linking continuous physiologic
data obtained from a wearable device with a novel machine learning approach known as personalized
physiologic analytics (PPA) run on a standard smartphone to provide clinicians with accurate assessments
of sepsis severity and mortality risk in septic children admitted to the Dhaka Hospital of the International
Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). Formative research among clinicians at icddr,b
will be used to develop this mHealth tool incorporating the PPA algorithm with a clinical decision support and
alert system for use by front-line clinicians. Finally, the tool’s feasibility, usability, and accuracy for detection of
sepsis severity and MODS will be validated in a new population of pediatric patients with sepsis.
Knowledge gained from this study will greatly advance the evidence base for the use of mHealth tools and
artificial intelligence techniques to help clinicians worldwide better care for critically ill children in LMIC settings
earlier in the course of their disease, thereby reducing morbidity and mortality from sepsis. The results of
this investigational research will be used to inform a multi-center clinical trial which would seek to assess the
impact of using this mHealth tool on clinical outcomes as well as the cost-effectiveness of this tool. This tool
may also provide an effective means of assessing patient responses to various therapeutic interventions via
continuous physiologic monitoring in future clinical trials. The proposed initiatives will also build a base of
technical and professional expertise at icddr,b in mHealth research capacity and user-centered design.
项目摘要
脓毒症,定义为由宿主对感染的反应失调引起的危及生命的器官功能障碍,
包括从脓毒症到严重脓毒症、脓毒性休克、多器官功能障碍
多器官功能障碍综合征(MODS),如果不治疗,最终死亡。脓毒症是全世界儿童死亡的主要原因,
这些死亡大多发生在低收入和中等收入国家(LMIC),但很少有临床工具
用于识别、监测或管理中低收入国家的败血症儿童。潜力很大
新的临床工具,可以帮助临床医生更快地识别儿童与先进的阶段,
脓毒症(严重脓毒症、脓毒性休克和MODS),这些患者的失代偿和死亡风险最高。
移动的健康(mHealth)工具、可穿戴设备和人工智能技术迅速激增
用于多种医疗应用,并可用于弥合重症患者护理中的差距,
LMIC设置。通过能够检测指示临床恶化的细微生理变化,
工具可以让临床医生更早地干预,更好地直接护理,并分配稀缺的资源,所有这些都没有
需要先进的实验室诊断或重症监护基础设施。此外,远程监控
在改善病人护理和保护医疗保健安全方面,
2019年新型冠状病毒(COVID-19)等传染病爆发期间的工作人员。
这项拟议的研究将开发一个上下文适当的mHealth工具,
从可穿戴设备获得的数据,采用称为个性化的新型机器学习方法,
生理分析(PPA)在标准智能手机上运行,为临床医生提供准确的评估
达卡国际医院收治的脓毒症患儿的脓毒症严重程度和死亡风险
孟加拉国腹泻病研究中心(icddr,B)。在icddr,B临床医生中的形成性研究
将用于开发这种mHealth工具,将PPA算法与临床决策支持相结合,
供一线临床医生使用的警报系统。最后,分析了该工具的可行性、可用性和检测精度,
脓毒症严重程度和MODS将在新的脓毒症儿科患者人群中进行验证。
从这项研究中获得的知识将大大推进使用移动健康工具的证据基础,
人工智能技术帮助全球临床医生更好地护理LMIC环境中的重症儿童
在其疾病过程的早期,从而降低脓毒症的发病率和死亡率。的结果
这项调查性研究将用于多中心临床试验,该试验将寻求评估
使用这种移动医疗工具对临床结果的影响以及这种工具的成本效益。此工具
还可以提供评估患者对各种治疗干预的反应的有效手段,
在未来的临床试验中进行持续的生理监测。拟议的举措还将建立一个基础,
icddr的技术和专业知识,移动健康研究能力和以用户为中心的设计方面的B。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Chow Garbern其他文献
Stephanie Chow Garbern的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Chow Garbern', 18)}}的其他基金
Development of a Mobile Health Personalized Physiologic Analytics Tool for Pediatric Patients with Sepsis
为脓毒症儿科患者开发移动健康个性化生理分析工具
- 批准号:
10878034 - 财政年份:2021
- 资助金额:
$ 24.71万 - 项目类别:














{{item.name}}会员




