Improving placenta imaging in women living with HIV
改善艾滋病毒感染女性的胎盘成像
基本信息
- 批准号:10852602
- 负责人:
- 金额:$ 6.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsArtificial IntelligenceAssessment toolBirthBirth WeightCaringCharacteristicsChicagoChildChronic DiseaseClinicalClinical DataComputational TechniqueComputer Vision SystemsComputer softwareDataData SetDevicesDiagnosisEthnic OriginEventFetal DevelopmentFetusFutureGestational AgeGleanGoalsHIVHealthHealthcareHemorrhageHospitalsImageIncomeInfantInfectionKidneyKnowledgeLifeLightingLinkLiverLow incomeLungMaternal and Child HealthMeasuresMedicalMedical InformaticsMembraneModelingMorbidity - disease rateMorphologyMothersNewborn InfantOrganOutcomePathologistPathologyPathology ReportPatientsPhotographyPlacentaPlacenta DiseasesPlacentationPopulationPregnancyPregnancy ComplicationsProcessProtocols documentationPublic HealthRaceResearchResearch PersonnelResourcesRetained PlacentaRiskSensitivity and SpecificitySepsisShapesSiteSoftware ValidationStandardizationTechnologyTestingTimeTrainingUgandaUmbilical cord structureVariantVisualWomanWorkadverse outcomeclinical careclinically significantcostdata miningdesigndigitaldigital imaginghealth of the motherimprovedintraamniotic infectionmathematical modelmortalityneglectnovelovertreatmentprototypescreeningsexsoftware developmenttool
项目摘要
Development of Software to Rapidly Assess Placenta Images at Birth
Project Summary
The placenta is a window into the events of pregnancy and the health of the mother and baby, yet only about
20% of placentas in the US are assessed by pathology exams and placental data is often neglected in
pregnancy research. Since both the mother and fetus contribute to and modulate placental development and
function, data from placental examination may inform short- and long-term clinical care of both mother and
child. Placental pathology remains under-used due to the time, cost, expertise, and facilities needed, even in
high-resource settings. Placental assessment can and should be more accessible to pathologists, clinicians,
and researchers, and assessment at birth can more readily aid clinical decisions and relate findings to
patients. Prior work has used photographic images to measure characteristics such as shape and cord coiling
and related these characteristics to placental diagnoses and outcomes of clinical importance. This project
aims to leverage the simplicity and low cost of digital photographs and the computational and decision
power of recent advances in artificial intelligence (AI) to create software for comprehensive placental
assessment from images of gross placentas. The software could address the need for widespread, simple
placenta assessment, particularly when information is needed urgently, pathologists are not highly trained for
placental pathology, or where resources only allow a small fraction of placentas to be reviewed. The
investigative team, with extensive expertise in placental pathology and research, clinical care, medical
informatics/AI, and image understanding, has developed an initial prototype with promising results for
predicting several clinically impactful diagnoses. Our preliminary data demonstrates that extensive data can
be collected from placental photos and that computational techniques allow the connection of abstracted data
to identify placental disease. The goal of this proposal is to develop and validate software to assess
placentas from digital photographs in any delivery setting. An extensive, first-of-its-kind dataset will be
created from three large hospitals including images and expert pathology reports from pregnancies with
abnormal and healthy outcomes (n>50,000). These sites include a range of characteristics across income,
race/ethnicity, health risks, and hospital resources. The resulting software will glean visual characteristics
from the disc, cord, and membranes and accurately identify specific features (e.g., shape) and diagnoses
(e.g., chorioamnionitis). The immediate information could impact clinical care before hospital discharge, and
ease-of-use will allow inclusion in pregnancy research. This software has the ability to strengthen traditional
pathology exams by standardizing and enhancing the data collected, providing better information to
pathologists. With such huge advances in technology, placental assessment at birth can no longer be viewed
as nonessential or too difficult. When fully developed and validated clinically in a range of birth settings, this
software could have the power to impact the care of millions of mothers and children around the world.
快速评估出生时胎盘图像的软件开发
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison D Gernand其他文献
Maternal vitamin D status, fetal growth patterns, and adverse pregnancy outcomes in a multisite prospective pregnancy cohort
一项多中心前瞻性妊娠队列研究中的母体维生素D水平、胎儿生长模式及不良妊娠结局
- DOI:
10.1016/j.ajcnut.2024.11.018 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:6.900
- 作者:
Celeste Beck;Nathan R Blue;Robert M Silver;Muzi Na;William A Grobman;Jonathan Steller;Samuel Parry;Christina Scifres;Alison D Gernand - 通讯作者:
Alison D Gernand
Determinants of Vitamin D Status of Women of Reproductive Age in Dhaka, Bangladesh: Insights from Husband–Wife Comparisons
- DOI:
10.1093/cdn/nzz112 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:
- 作者:
Joo-Hyun Jeong;Jill Korsiak;Eszter Papp;Joy Shi;Alison D Gernand;Abdullah Al Mahmud;Daniel E Roth - 通讯作者:
Daniel E Roth
Alison D Gernand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison D Gernand', 18)}}的其他基金
Development of Software to Rapidly Assess Placenta Images at Birth
开发快速评估出生时胎盘图像的软件
- 批准号:
10446308 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Development of Software to Rapidly Assess Placenta Images at Birth
开发快速评估出生时胎盘图像的软件
- 批准号:
10707343 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
相似国自然基金
基于人工智能的代谢性疾病监控与诊疗平台研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
建立新型Transformer架构算法提升人工智能诊断对心电图P波的定位与识别
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于人工智能算法构建HIV/HBV合并感染预后模型
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
人工智能算法在结直肠癌肝转移瘤CT影像病灶全自动分割及复发风险模型构建中的应用
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
人工智能领域基于加权概率模型特征信息提取算法的研究
- 批准号:2025JJ70400
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AI驱动的多模态孕期数据融合:出生缺陷风险预测与机制探索
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于生成式人工智能的内容营销创新研究
- 批准号:
- 批准年份:2025
- 资助金额:100.0 万元
- 项目类别:省市级项目
基于人工智能的妇产专科医疗服务路径智能算法技术研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于人工智能的耐药结核病院内外一体化管理模式的构建
- 批准号:2025JJ80685
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
当人工遇上智能: 建言轨迹的样态构型
及响应策略的形塑逻辑
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 6.1万 - 项目类别:
Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 6.1万 - 项目类别: