Transposable Element Interaction and Its Impact on Human Development and Health
转座元件相互作用及其对人类发育和健康的影响
基本信息
- 批准号:10894990
- 负责人:
- 金额:$ 4.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAlternative SplicingAwardCodeDNA Transposable ElementsDataDiseaseEtiologyEvolutionGene Expression RegulationGenesGeneticGenetic DiseasesGenetic Predisposition to DiseaseGenomeHealthHindlimbHumanHuman DevelopmentHuman Genome ProjectIndividualJunk DNALocomotionModelingParentsPongidaeProtein IsoformsProteinsRNA SplicingRetrotransposonTailTestingUnited States National Institutes of HealthWorkgene functionhuman diseasemRNA Precursornovel
项目摘要
Summary of Parent Award
This is a proposed supplement to Dr. Bo Xia’s NIH Director’s Early Independence Award
(DP5OD033430) titled: “Transposable Element Interaction and Its Impact on Human Development
and Health”. Below is the abstract of this parent award:
One of the most surprising discoveries from the Human Genome Project is that only about
1.5% of the genome codes for proteins, whereas around 46% comprises transposable elements
(TEs). Functional assessment of how these ubiquitous TEs affect human development and health has
posed a major challenge. While most TEs are considered non-functional, or “junk” DNA, here I argue
that TE-induced gene regulation is strongly underestimated due to the historical tendency to explore
TE functionality by studying individual TEs independently of each other. I propose to provide a novel
framework to study how interactions between the hitherto “junk” TE sequences can regulate pre-
mRNA splicing to affect gene function, and investigate whether such a mechanism could substantially
affect both human development and evolution, and help explain the genetic etiology of human
diseases. This proposal is inspired from my recent discovery that the interaction between a pair of Alu
retrotransposons may explain the long-sought genetic basis for the evolution of tail loss in human and
apes. Based on this work and my preliminary data, I will first use the Alu pair interaction in TBXT gene
as a model to demonstrate that the interaction between intronic TEs can profoundly impact human
development and health, and explain the etiology of a common genetic disease (Aim 1). Aim 2
proposes to test the hypothesis that the isoform of TBXT induced by interaction of the Alu pair
pleiotropically contributes to strengthening of hindlimbs, thus directly testing the long-standing
hypothesis that the tail-loss evolution in hominoids is associated with bipedal locomotion evolution
(Aim 2). Beyond the specific interaction of the Alu pair in the TBXT gene, Aim 3 will develop an
algorithm called TEILO (Transposable Element Interaction & Local Organization) to systematically
identify the functional TE interactions that affect gene function and human health by modulating
alternative splicing. This work premises a new paradigm to studying the interaction between TEs and
its implication to human health and diseases.
家长奖摘要
这是对夏博博士NIH主任早期独立奖的建议补充
(DP5OD033430)标题:“转座因子相互作用及其对人类发育的影响
健康”。下面是这个奖项的摘要:
人类基因组计划最令人惊讶的发现之一是,
1.5%的基因组编码蛋白质,而约46%的基因组包含转座因子
(TE)。对这些无处不在的TE如何影响人类发育和健康的功能评估
提出了一个重大挑战。虽然大多数TE被认为是无功能的,或“垃圾”DNA,在这里我认为,
TE诱导的基因调控被严重低估,这是因为历史上倾向于探索
TE功能通过研究独立的TE彼此。我打算写一本小说
框架来研究迄今为止的“垃圾”TE序列之间的相互作用如何调节前
mRNA剪接影响基因功能,并研究这种机制是否可以在很大程度上
影响人类的发展和进化,并有助于解释人类的遗传病因学
疾病这个建议的灵感来自于我最近的发现,一对Alu
反转录转座子可以解释人类尾部缺失进化的长期寻找的遗传基础,
猿类在此基础上,利用TBXT基因中Alu对的互作效应
作为一个模型,以证明内含子TE之间的相互作用可以深刻地影响人类
发展和健康,并解释一种常见遗传疾病的病因(目标1)。目的2
建议测试的假设,TBXT的亚型诱导的相互作用的Alu对
多效性有助于加强后肢,从而直接测试长期存在的
一种假设,即类人猿的尾巴缺失进化与双足运动进化有关
(Aim 2)。除了TBXT基因中Alu对的特异性相互作用外,Aim 3还将开发一种新的基因。
算法称为TEILO(转座元素相互作用和本地组织),
确定功能性TE相互作用,通过调节基因功能和人类健康,
选择性剪接这一工作为研究TEs与
它对人类健康和疾病影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Xia其他文献
Bo Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Xia', 18)}}的其他基金
High-throughput Discovery of Novel Genome Organization Regulators
新型基因组组织调节因子的高通量发现
- 批准号:
10777403 - 财政年份:2023
- 资助金额:
$ 4.8万 - 项目类别:
Transposable Element Interaction and Its Impact on Human Development and Health
转座元件相互作用及其对人类发育和健康的影响
- 批准号:
10705110 - 财政年份:2022
- 资助金额:
$ 4.8万 - 项目类别:
Transposable Element Interaction and Its Impact on Human Development and Health
转座元件相互作用及其对人类发育和健康的影响
- 批准号:
10481466 - 财政年份:2022
- 资助金额:
$ 4.8万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.8万 - 项目类别:
Research Grant