Therapeutic potential of FANCM for BRCA1-linked cancer
FANCM 对 BRCA1 相关癌症的治疗潜力
基本信息
- 批准号:10898104
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:BRCA1 geneBiochemicalCRISPR/Cas technologyCancer cell lineCellsChromatinChromosome StructuresChromosomesCytogeneticsDNADNA DamageDNA StructureDNA replication forkDefectEnvironmentEscherichia coliEventFANCD2 proteinFanconi&aposs AnemiaGene ConversionGenesGeneticGenetic studyGenomic InstabilityGoalsHereditary Breast and Ovarian Cancer SyndromeHistonesHumanIndividualKnock-outLinkMalignant NeoplasmsMalignant neoplasm of ovaryMammalian CellMammalian ChromosomesMediatingMolecularMotorMusMutationNucleosomesOutcomePathway interactionsPharmaceutical PreparationsPhasePhenocopyPhenotypePlayPoint MutationPoly(ADP-ribose) Polymerase InhibitorPositioning AttributeProcessProtein DynamicsProteinsRegulationReporterResistance developmentRoleSiteSmall Interfering RNASourceSpecificitySusceptibility GeneSystemTechniquesTherapeuticWomanWorkcancer cellcancer genomecancer predispositioncancer therapyembryonic stem cellgenome-wideholistic approachhomologous recombinationknock-downmalignant breast neoplasmmutantnovelnovel therapeuticspreventrecruitrepairedresponsesuccesssynthetic lethal interactiontargeted cancer therapytherapeutic targettooltranslocasetumortumorigenesis
项目摘要
Project Summary/Abstract
Breast and ovarian cancer are among the most common cancers in women worldwide.PARP inhibitors have
shown potential for the treatment of BRCA-linked cancer, via a synthetic lethality mechanism that exploits the
HR defect. However, tumors often develop resistance to these and other drugs. Therefore, there is a pressing
need to find new, targeted treatments for BRCA-linked cancer. Genomic instability is a hallmark of cancer cells
and a potential source of tumorigenesis. A major cause of genomic instability is replication fork stalling at sites
of DNA damage or abnormal DNA structure. A limitation in the study of mammalian stalled fork repair has been
a dearth of tools with which to analyze this process in molecular detail. The Scully lab solved this problem by
adapting the Escherichia coli Tus/Ter replication fork barrier (RFB) to induce site-specific replication fork
stalling on a mammalian chromosome.
Tandem duplications (TDs) in primary cells lacking BRCA1 are induced specifically by a Tus/Ter block but not
by a conventional double strand break (DSB), indicating specificity for the stalled fork response. Intriguingly,
breast and ovarian cancers lacking BRCA1 similarly acquire large numbers of small (~10 kb) TDs, which we
have termed “Group 1” TD. Thus, the Tus/Ter system recapitulates the BRCA1-specific regulation of
Group 1 TD formation observed in human breast and ovarian cancer. I found that the stalled fork motor
protein—FANCM (product of the Fanconi anemia [FA] group M gene) acts synergistically with BRCA1 to
suppress Tus/Ter-induced TDs. Further, I discovered a novel synthetic lethal interaction between Brca1
and Fancm loss in mouse embryonic stem (ES) cells and in breast and ovarian cancer cells. These findings
suggest that FANCM may be a promising therapeutic target in BRCA1-linked breast and ovarian cancer.
My goals in this proposal are to delineate the novel FANCM-BRCA1 synthetic lethal interaction in cancer cells
and to determine the mechanism of synthetic lethality (Aim1). Further, I will explore the chromatin environment
and protein dynamics at the stalled fork and will study how alterations in these processes contribute to the
FANCM-BRCA1 synthetic lethal interaction (Aim2). I observe an epistatic role of Fancm and its downstream
target Fancd2 at Tus/Ter in promoting error free repair and suppressing error-prone repair.This critical role of
Fancm and Fancd2 in repair pathway choice at stalled forks raises the possibility that they might share similar
genetic interactions with Brca1. will identify how individual domains of FANCD2 function in repair pathway
choice at stalled forks and their genetic interaction with Brca1 (Aim 3). This holistic approach will provide a full
picture of the mechanism of FANCM-BRCA1 synthetic lethal interactions and might identify in FANCD2 a new
synthetic lethal target for cancer therapy.
I
项目总结/摘要
乳腺癌和卵巢癌是全世界女性最常见的癌症之一。
显示出治疗BRCA相关癌症的潜力,通过一种利用
人力资源缺陷。然而,肿瘤通常会对这些药物和其他药物产生耐药性。因此,有一个紧迫的
我们需要找到新的针对BRCA相关癌症的靶向治疗方法。基因组不稳定是癌细胞的一个标志
也是肿瘤发生的潜在来源基因组不稳定的一个主要原因是复制叉停滞在位点
DNA损伤或DNA结构异常。在哺乳动物停滞叉修复的研究中,
缺乏工具来分析这个过程的分子细节。斯卡利实验室解决了这个问题,
适应大肠杆菌Tus/Ter复制叉屏障(RFB)以诱导位点特异性复制叉
在哺乳动物染色体上停滞
Tus/Ter阻断可特异性诱导缺乏BRCA 1的原代细胞中的串联重复(TD),
通过常规的双链断裂(DSB),表明停滞的叉反应的特异性。有趣的是,
缺乏BRCA 1的乳腺癌和卵巢癌同样获得大量的小(~10 kb)TD,我们
被称为“组1”TD。因此,Tus/Ter系统概括了BRCA 1特异性调节,
组1在人乳腺癌和卵巢癌中观察到TD形成。我发现熄火的叉式发动机
蛋白质-FANCM(范可尼贫血[FA] M组基因的产物)与BRCA 1协同作用,
抑制Tus/Ter诱导TD。此外,我发现了一种新的合成致命的相互作用之间的Brca 1
以及小鼠胚胎干(ES)细胞以及乳腺癌和卵巢癌细胞中的Fancm缺失。这些发现
表明FANCM可能是BRCA 1相关乳腺癌和卵巢癌的一个有希望的治疗靶点。
我在这个提案中的目标是描绘新的FANCM-BRCA 1合成致命的相互作用在癌细胞中
并确定合成致死(Aim 1)的机制。此外,我将探索染色质环境
和蛋白质动力学,并将研究如何改变这些过程有助于
FANCM-BRCA 1合成致死相互作用(Aim 2)。我观察到Fancm及其下游的上位作用
靶向Tus/Ter的Fancd 2在促进无错误修复和抑制易错修复中的关键作用。
Fancm和Fancd 2在停滞分叉处的修复途径选择中的作用提高了它们可能具有相似的
与Brca 1的基因相互作用。将确定FANCD 2的各个结构域如何在修复途径中发挥作用
选择停滞的分叉及其与Brca 1的遗传相互作用(Aim 3)。这一整体方法将提供一个全面的
FANCM-BRCA 1合成致死相互作用机制的图片,并可能在FANCD 2中识别出一种新的
用于癌症治疗的合成致命靶点。
我
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arvind Panday其他文献
Arvind Panday的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arvind Panday', 18)}}的其他基金
Therapeutic potential of FANCM for BRCA1-linked cancer
FANCM 对 BRCA1 相关癌症的治疗潜力
- 批准号:
10446024 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Therapeutic potential of FANCM for BRCA1-linked cancer
FANCM 对 BRCA1 相关癌症的治疗潜力
- 批准号:
10584591 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Operating Grants
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for JSPS Fellows