Hypoxia inducible factor 1alpha--fracture repair

缺氧诱导因子1α--骨折修复

基本信息

项目摘要

DESCRIPTION (Taken from the application): Despite a wealth of information regarding hypoxia and angiogenesis during fracture repair, the underlining molecular events responsible for these critical early processes remain unknown. With the recent technological advances in molecular biology and the identification of thousands of genes, it is now possible to more clearly examine the precise molecular events that underlie the fracture repair process. In essence, we strongly believe that key early stage processes, including hypoxia and angiogenesis, are ultimately responsible for determining the success (or failure) of the healing process. Thus, we propose the hypothesis that during the early stages of fracture healing, hypoxia resulting from the inevitable disruption of the bone's blood supply, induces hypoxia inducible factor I (HIF-1a), which in turn up-regulates transcription of a cascade of downstream genes that directly promote angiogenesis. The objective of this three year study is to test the hypothesis that the up-regulation of the transcription factor, HIF-la, is critical to the establishment of neovascularization within areas of chondrogenesis and endochondral ossification in the fracture callus. Our preliminary data show that HIF-la, as well as a number of angiogenic-related genes (i.e. vascular endothelial growth factor [VEGF], CYR61), are up-regulated during the stages of fracture healing, providing strong supporting evidence for our hypothesis. Experiments will be performed to systematically extend these findings through four specific aims that utilize the established in vivo femur fracture model to determine the temporal and spatial expression levels of: (i) HIF-1a (ii) its target genes known to play a role in angiogenesis (VEGF), vasodilation (nitric oxide synthase NOS, heme oxygenase HO1, and erythopoiesis (erythropoietin RPO, tranferrin), and to directly compare the (iii) angiogenesis (neovascularization) and (iv) structural integrity (strength and stiffness) of the fracture callus and healing femurs, respectively, in HIF-1a partially deficient (+/-) mice to that of their wild type (+/+) littermates. These studies will provide unique insight into critical early-stage events, and help define etiologic factors that may contribute to the incidence of delayed healing, particularly in the case of the molecular components (i.e. HIF-l a) involved in hypoxia and angiogenesis.
描述(摘自应用程序):尽管有大量信息 关于骨折修复过程中的缺氧和血管生成,强调 负责这些关键早期过程的分子事件仍然未知。 随着近年来分子生物学技术的进步和 识别数千个基因,现在可以更清楚地 检查骨折修复过程中的精确分子事件。 从本质上讲,我们坚信关键的早期阶段流程,包括 缺氧和血管生成,最终决定了 愈合过程的成功(或失败)。因此,我们提出假设 在骨折愈合的早期阶段,由于骨折引起的缺氧 不可避免地破坏骨骼的血液供应,导致缺氧 因子 I (HIF-1a),它反过来上调一系列级联的转录 直接促进血管生成的下游基因。此举的目的 为期三年的研究旨在检验以下假设: 转录因子 HIF-1a 对于建立 软骨形成和软骨内骨化区域内的新生血管形成 在骨折愈伤组织中。我们的初步数据表明,HIF-la 以及 血管生成相关基因(即血管内皮生长因子)的数量 [VEGF]、CYR61) 在骨折愈合阶段上调, 为我们的假设提供了有力的支持证据。实验将是 通过四个具体目标系统地扩展这些发现 利用已建立的体内股骨骨折模型来确定 (i) HIF-1a (ii) 其靶基因的时间和空间表达水平 已知在血管生成(VEGF)、血管舒张(一氧化氮)中发挥作用 合酶 NOS、血红素加氧酶 HO1 和红细胞生成(促红细胞生成素 RPO、 转铁蛋白),并直接比较(iii)血管生成 (新生血管)和(iv)结构完整性(强度和刚度) HIF-1a 中的骨折愈伤组织和愈合股骨分别部分 缺陷(+/-)小鼠与其野生型(+/+)同窝小鼠相比。这些 研究将为关键的早期事件提供独特的见解,并帮助 明确可能导致延迟发生的病因 愈合,特别是在分子成分(即 HIF-1a)的情况下 参与缺氧和血管生成。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL HADJIARGYROU其他文献

MICHAEL HADJIARGYROU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL HADJIARGYROU', 18)}}的其他基金

Functional Roles of Integrins in Modulating Neural Responses of Mechanically Sens
整合素在调节机械感觉神经反应中的功能作用
  • 批准号:
    7048361
  • 财政年份:
    2006
  • 资助金额:
    $ 7.53万
  • 项目类别:
Functional Roles of Integrins in Modulating Neural Responses of Mechanically Sens
整合素在调节机械感觉神经反应中的功能作用
  • 批准号:
    7230015
  • 财政年份:
    2006
  • 资助金额:
    $ 7.53万
  • 项目类别:
Hypoxia inducible factor 1alpha--fracture repair
缺氧诱导因子1α--骨折修复
  • 批准号:
    6323886
  • 财政年份:
    2001
  • 资助金额:
    $ 7.53万
  • 项目类别:
Hypoxia inducible factor 1alpha--fracture repair
缺氧诱导因子1α--骨折修复
  • 批准号:
    6512175
  • 财政年份:
    2001
  • 资助金额:
    $ 7.53万
  • 项目类别:

相似海外基金

Time-dependent controlled release of multiple drugs to accelerate the regeneration of soft and hard tissue using nanofibrous guided bone regeneration membrane
利用纳米纤维引导骨再生膜,时间依赖性控制释放多种药物,加速软硬组织再生
  • 批准号:
    23K16040
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identification of new macrophage populations promoting bone regeneration.
鉴定促进骨再生的新巨噬细胞群。
  • 批准号:
    23K19731
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
ALTERING THE IMMUNE LANDSCAPE TO AUGMENT BONE REGENERATION
改变免疫景观以增强骨再生
  • 批准号:
    10727797
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Bone regeneration using ultrasound beat frequencies
使用超声波拍频进行骨再生
  • 批准号:
    2886002
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Studentship
Preparation of core-shell particles with bone regeneration and antibacterial properties for the treatment of bone defects.
具有骨再生和抗菌特性的核壳颗粒的制备用于治疗骨缺损。
  • 批准号:
    23K13845
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Electrospun Amino Acid-based Poly(ester urea) Biodegradable Barrier Membrane for Guided Bone Regeneration
用于引导骨再生的电纺氨基酸基聚(酯脲)生物可降解屏障膜
  • 批准号:
    10827655
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Determining cell-specific mechanisms that drive aberrant bone regeneration in Down syndrome
确定驱动唐氏综合症骨再生异常的细胞特异性机制
  • 批准号:
    10654983
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Targeting TNF Receptors to Inhibit Inflammation and to Prompt Bone Regeneration in Type 1 Diabetes
靶向 TNF 受体抑制炎症并促进 1 型糖尿病的骨再生
  • 批准号:
    10915157
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
Development of a Novel Bone Adhesive Scaffold to Accelerate Bone Regeneration and Improve Ridge Height Maintenance for the Treatment of Patients with Residual Ridge Resorption
开发新型骨粘合剂支架以加速骨再生并改善牙槽嵴高度维持以治疗残留牙槽嵴吸收的患者
  • 批准号:
    10603678
  • 财政年份:
    2023
  • 资助金额:
    $ 7.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了