Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
基本信息
- 批准号:10709614
- 负责人:
- 金额:$ 59.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-23 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Absence of pain sensationAcousticsAdultAffectiveAffective SymptomsAnalgesicsAnxietyArea Under CurveBehaviorBiological MarkersBrainBrain imagingCellular PhoneChronicChronic disabling painChronic low back painClassificationClinicClinicalClinical TrialsDataData AnalysesDepressed moodDevelopmentDiabetes MellitusDiagnosisDiseaseEmotionalFacial ExpressionFriendsFunctional disorderGesturesGlucoseHeterogeneityHomeInterviewInvestigationLanguageLinguisticsLocationLow Back PainMachine LearningMajor Depressive DisorderMeasuresMedicalMental DepressionMental HealthMental disordersMethodsMonitorMood DisordersMoodsMusculoskeletalNatural Language ProcessingNeurostimulation procedures of spinal cord tissueOutcomePainPain ResearchPain intensityPatient CarePatient Self-ReportPatientsPatternPhenotypePlacebosPrediction of Response to TherapyPsychosesRadiculopathyReportingResearchResearch PersonnelResearch Project GrantsRoleSample SizeSchizophreniaSemanticsSensorySpeechStructureSymptomsSyndromeTestingTherapeutic InterventionTranslatingTreatment FailureUnited StatesVideo RecordingVisualVoicebehavior observationchronic painchronic pain managementchronic pain patientchronic painful conditionclinical careclinical diagnosisclinical painclinical practiceclinically significantcomorbid depressioncostdiagnostic criteriadisabilitydrug misuseeffective therapyevidence baseexperiencehigh risk populationimprovedindividual patientinnovationlanguage processinglarge scale datamachine learning modelnatural languagenegative affectneuromechanismnovelnovel strategiespain patientpatient populationpatient responsepatient subsetspersonalized diagnosticsphenotypic biomarkerpre-clinical researchpredicting responseprovider communicationresearch studyresponders and non-respondersresponsesevere mental illnesssyntaxtooltreatment response
项目摘要
PROJECT SUMMARY
Chronic pain is still a clinical diagnosis based on location, symptom report, and clinical expertise. Despite recent
efforts to delineate specific and evidence-based criteria to diagnose different chronic pain conditions, substantial
heterogeneity persists among chronic pain patients often within the same clinical pain syndrome (e.g., low-back
pain). The lack of quantitative and reliable measures to diagnose chronic pain and the related heterogeneity
that ensues are major obstacles to medical care for patients and for research studies. Chronic pain patients are
often managed using a “trial and error” approach as targeted and precise treatment is not possible without
quantitative biomarkers, like glucose levels for diabetes. In addition, patient-related variability in analgesic
response is thought to be one of the main reasons why the current therapeutic interventions for chronic pain are
unsatisfactory, as 20% of US adults live in chronic pain and 8% of US adults are disabled from chronic pain.
Natural language processing analyzes semantic and emotional content, syntactic structure, and complexity of
speech; audio-visual processing analyzes voice acoustics and facial expressions. These tools have recently
been shown to be powerful quantitative and reliable biomarkers for discriminating between patients with
psychiatric conditions like schizophrenia and major depression, and in predicting long-term outcomes, like the
development of psychosis in high-risk groups. A parallel can be drawn between chronic pain and chronic mental
illness like major depressive disorder, as both conditions are diagnosed based on subjective report of symptoms,
diagnostic criteria, and clinical expertise. In addition, both conditions are closely associated with negative affect
which has been corroborated by preclinical research and brain imaging data showing a critical role of the limbic
brain in the pathophysiology of these conditions. Therefore, it stands to reason that natural language and audio-
visual processing may serve as biomarkers to phenotype different types of chronic pain patients and to measure
patients' responses to treatment.
This proposal will study the ability of language analysis and audio-visual processing tools in discriminating
between different types of patients with chronic pain (i.e., discriminant validity) in Aim1, and the ability of these
tools to predict analgesic response of chronic low-back pain (CLBP) patients receiving spinal cord stimulation
(SCS) (i.e., predictive validity) in Aim 2. In both aims patients will be video recorded during an interview where
they speak about their pain or mood (for major depressive disorder patients). Language, speech, and facial
expression features will be extracted from the recordings and used in multivariate machine learning models. In
Aim 1 natural language and audio-visual processing patterns will be compared between patients with 3
conditions: (1) musculoskeletal CLBP, (2) musculoskeletal CLBP with clinically significant negative affect, and
(3) moderate major depressive disorder. In Aim 2, natural language and audio-visual processing patterns will be
used to identify responders and non-responders to SCS.
项目摘要
慢性疼痛仍然是一种基于位置,症状报告和临床专业知识的临床诊断。尽管最近
努力描绘具体的和循证的标准,以诊断不同的慢性疼痛状况,实质上
异质性在慢性疼痛患者中持续存在通常在相同的临床疼痛综合征内(例如,腰背
疼痛)。缺乏定量和可靠的措施来诊断慢性疼痛和相关的异质性
这是对病人的医疗护理和研究的主要障碍。慢性疼痛患者
通常使用“试错”方法进行管理,因为如果没有
定量生物标志物,如糖尿病的葡萄糖水平。此外,镇痛药的患者相关变异性
反应被认为是目前慢性疼痛治疗干预的主要原因之一,
然而,令人不满意的是,20%的美国成年人生活在慢性疼痛中,8%的美国成年人因慢性疼痛而残疾。
自然语言处理分析语义和情感内容、句法结构以及
语音;视听处理分析声音声学和面部表情。这些工具最近
已被证明是用于区分患有糖尿病的患者的强大的定量和可靠的生物标志物。
精神疾病,如精神分裂症和重度抑郁症,并在预测长期结果,如
精神病在高危人群中的发展。慢性疼痛和慢性精神疾病之间可以有一个相似之处。
像重度抑郁症这样的疾病,因为这两种疾病都是根据症状的主观报告来诊断的,
诊断标准和临床专业知识。此外,这两种情况都与消极情绪密切相关。
临床前研究和脑成像数据证实了这一点,这些数据显示边缘系统的关键作用
大脑在这些条件的病理生理学。因此,自然语言和音频-
视觉处理可以作为生物标志物来表现不同类型的慢性疼痛患者,
患者对治疗的反应。
本研究将探讨语言分析及视听处理工具在辨别
在不同类型的慢性疼痛患者之间(即,Aim 1中的判别效度),以及这些能力
用于预测接受脊髓刺激的慢性腰痛(CLBP)患者的镇痛反应的工具
(SCS)(即,预测效度)目标2。在这两个目标中,患者在接受采访时都将被录像,
他们谈论他们的痛苦或情绪(对于重度抑郁症患者)。语言、言语和面部表情
将从记录中提取表情特征并用于多变量机器学习模型。在
目的1自然语言和视听处理模式将比较患者3
条件:(1)肌肉骨骼CLBP,(2)具有临床显著负面影响的肌肉骨骼CLBP,以及
(3)中度重度抑郁症在目标2中,自然语言和视听处理模式将被
用于识别SCS的应答者和非应答者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Geha其他文献
Paul Geha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Geha', 18)}}的其他基金
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
Quantitative Language and Facial Expression Phenotyping of Chronic Pain
慢性疼痛的定量语言和面部表情表型
- 批准号:
10569769 - 财政年份:2022
- 资助金额:
$ 59.44万 - 项目类别:
Brain Structural Biomarkers of Risk and Resilience to Pain Chronification
疼痛风险和恢复能力的脑结构生物标志物
- 批准号:
10584169 - 财政年份:2022
- 资助金额:
$ 59.44万 - 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
- 批准号:
8679716 - 财政年份:2014
- 资助金额:
$ 59.44万 - 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
- 批准号:
8843824 - 财政年份:2014
- 资助金额:
$ 59.44万 - 项目类别:
Neural Mechanism of Obesity in Chronic Low Back Pain
肥胖与慢性腰痛的神经机制
- 批准号:
9455634 - 财政年份:2014
- 资助金额:
$ 59.44万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 59.44万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 59.44万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 59.44万 - 项目类别:
Discovery Launch Supplement