Project 2: Defining Targetable Metabolic Dependencies in Human Renal Cell Carcinoma
项目 2:定义人类肾细胞癌的靶向代谢依赖性
基本信息
- 批准号:10708840
- 负责人:
- 金额:$ 33.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBypassCarbonCathepsinsCell physiologyCellsCitric Acid CycleClear CellClear cell renal cell carcinomaClinicCollaborationsCytotoxic T-LymphocytesDataDependenceDrug TargetingEnzymesEquilibriumEventFailureGenerationsGerm-Line MutationGlucoseGlutaminaseGlutamineGlycogenGrowthHumanImmuneImmunocompetentImplantInfusion proceduresInterventionKnowledgeLabelLinkLipidsMalignant NeoplasmsMediatingMedical centerMetabolicMetabolic PathwayMetabolismMitochondriaModelingMusNeoplasm MetastasisNitrogenNon-MalignantNutrientOxidation-ReductionOxidative Phosphorylation DeficiencyPathway interactionsPatientsPharmacologic SubstancePhenotypePredispositionProcessReactionRenal Cell CarcinomaRenal carcinomaReportingResistanceRoleSourceTestingTexasTherapeuticTranslatingTumor PromotionTumor TissueUniversitiescell typedrug developmentgenetic approachin vivoinhibitorinnovationinsightmetabolomicsmouse modelneoplastic cellnext generationnitrogen metabolismnovelnovel strategiesoxidationsmall moleculetherapeutic targettreatment responsetumortumor growthtumor metabolismtumor microenvironmenttumorigenesis
项目摘要
Project Summary
Metabolic reprogramming in cancer is an attractive source of therapeutic targets because it fuels tumor growth
and metastasis through enzymes that are in principle amenable to inhibition with small molecules. Metabolic
reprogramming is intrinsic to renal cell carcinoma (RCC). In fact, few tumors are as profoundly linked to metabolic
derangement as RCC and in particular, clear cell RCC (ccRCC). This is shown by: the clear cell phenotype,
which arises from lipid/glycogen accumulation; direct metabolic reprogramming by the ccRCC signature event,
VHL inactivation; and the observation that germline mutations in metabolic enzymes cause RCC, but few other
tumor types. The two main barriers to targeting metabolic reprograming are the lack of knowledge about RCC
metabolism in patients and the absence of validated translational platforms. To address these challenges, we
executed 5 major activities in Years 1 – 5. First, we pioneered intraoperative infusions of 13C-labeled nutrients in
patients to directly report on RCC metabolism in humans, which revealed, among others, suppressed glucose
oxidation. Second, we showed, mechanistically, that suppressed glucose oxidation is due to deficient oxidative
phosphorylation. Third, we determined that additive-free, orthotopically implanted, patient tumors (tumorgrafts,
TG) are valid models to study human RCC metabolism. Fourth, we established the In Vivo Metabolism Lab,
an innovative translational platform to detect metabolic reprogramming in human tumors, nominate therapeutic
strategies, test them in TG models and primary human tumor tissue, and advance the most promising leads.
Fifth, we demonstrated that both primary ccRCC tumors and metastases use glutamine to maintain redox
balance and produce essential biosynthetic intermediates. Building upon discoveries by us and others implicating
glutamine in cancer, the CB-839 glutaminase inhibitor was developed. However, results in ccRCC trials have
been disappointing. One possible explanation is that glutaminase is only one of several enzymes that catabolize
glutamine. Our new data not only explain CB-839 lack of efficacy, but also identify new opportunities for
intervention. Indeed, while CB-839 inhibits carbon metabolism by targeting glutaminase, glutamine is also a
source of nitrogen in RCC, which is processed via amidotransferases, which are not inhibited by CB-839. In
preliminary data, we show that pan-glutamine inhibition with JHU-083 not only effectively inhibits
amidotransferase reactions, but also significantly blocks ccRCC TG growth. To advance effective glutamine
targeting to the clinic, in Years 6 – 10, we will pursue the following Aims. Aim 1. Probing the role of
amidotransferases in mediating resistance to CB-839 glutaminase inhibitor. Aim 2. Targeting IDH enzymes to
maximize glutamine blockade. Aim 3. To maximize the impact of glutamine targeting by leveraging the tumor
microenvironment using next-generation models.
项目摘要
癌症中的代谢重编程是一个有吸引力的治疗靶点来源,因为它促进肿瘤生长
和通过原则上易于用小分子抑制的酶转移。代谢
重编程是肾细胞癌(RCC)固有的。事实上,很少有肿瘤与代谢
在一些实施方案中,所述细胞是肾细胞癌,特别是透明细胞肾细胞癌(ccRCC)。这表现为:透明细胞表型,
其由脂质/糖原积累引起;由ccRCC签名事件引起的直接代谢重编程,
VHL失活;以及观察到代谢酶的生殖系突变导致RCC,但很少有其他突变。
肿瘤类型靶向代谢重编程的两个主要障碍是缺乏关于RCC的知识
这可能与患者的代谢有关,并且缺乏经验证的翻译平台。为了应对这些挑战,我们
在第1 - 5年执行了5项主要活动。首先,我们开创了术中输注13 C标记的营养素,
患者直接报告人类RCC代谢,其中包括葡萄糖抑制
氧化其次,我们从机制上表明,葡萄糖氧化抑制是由于缺乏氧化应激。
磷酸化第三,我们确定无添加剂的原位植入患者肿瘤(肿瘤移植物,
TG)是研究人肾细胞癌代谢的有效模型。第四,我们建立了体内代谢实验室,
一个创新的翻译平台,用于检测人类肿瘤中的代谢重编程,
研究人员正在寻找新的治疗策略,在TG模型和原发性人类肿瘤组织中测试它们,并推进最有前途的线索。
第五,我们证明了原发性ccRCC肿瘤和转移瘤都使用谷氨酰胺来维持氧化还原,
平衡并产生必需的生物合成中间体。基于我们和其他人的发现,
在癌症中,开发了CB-839谷氨酰胺酶抑制剂。然而,ccRCC试验的结果表明,
令人失望一种可能的解释是,转氨酶只是分解代谢的几种酶之一,
谷氨酰胺。我们的新数据不仅解释了CB-839缺乏疗效,而且还发现了新的机会,
干预事实上,虽然CB-839通过靶向谷氨酰胺酶来抑制碳代谢,但谷氨酰胺也是一种抗氧化剂。
RCC中的氮源,通过酰胺基转移酶进行加工,不受CB-839的抑制。在
初步数据,我们表明,泛谷氨酰胺抑制与JHU-083不仅有效地抑制,
这不仅可以抑制酰胺转移酶反应,而且还显著阻断ccRCC TG生长。为了提高有效的谷氨酰胺
针对临床,在6 - 10年,我们将追求以下目标。目标1。探索的作用
酰胺转移酶介导对CB-839转氨酶抑制剂的抗性。目标二。将IDH酶靶向至
最大化谷氨酰胺阻断。目标3。为了最大限度地发挥谷氨酰胺靶向作用,
使用下一代模型的微环境
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RALPH J DEBERARDINIS其他文献
RALPH J DEBERARDINIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RALPH J DEBERARDINIS', 18)}}的其他基金
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
10472535 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
9762588 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
10238924 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Metabolic Regulators of Tumor Growth and Progression
肿瘤生长和进展的代谢调节因子
- 批准号:
9389673 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Human metabolic variation as a window into cancer initiation and progression
人类代谢变异是了解癌症发生和进展的窗口
- 批准号:
10736053 - 财政年份:2017
- 资助金额:
$ 33.93万 - 项目类别:
Project 3: Clinically Actionable Biomarkers from Renal Cell Carcinoma Metabolism and Imaging
项目 3:肾细胞癌代谢和影像学中临床可行的生物标志物
- 批准号:
9071072 - 财政年份:2016
- 资助金额:
$ 33.93万 - 项目类别:
相似国自然基金
展向局部自由流湍流下边界层bypass转捩的二次失稳机理的研究
- 批准号:11202147
- 批准年份:2012
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
边界层中Bypass转捩机理的研究
- 批准号:11102131
- 批准年份:2011
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of nextgeneration cellular artificial blood vessels for coronary artery bypass surgery using bio-3D printer
使用生物 3D 打印机开发用于冠状动脉搭桥手术的下一代细胞人造血管
- 批准号:
23H02991 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of the Effect of Changes in Blood Flow to the Brain Before and After Cardiopulmonary Bypass on Postoperative Delirium
体外循环前后脑血流变化对术后谵妄的影响研究
- 批准号:
23K08418 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A novel through-the-scope exchangeable double balloon catheter to guide endoscopic bypass: a practice-changing technology in the management of malignant gastric outlet obstruction
一种新型的通过镜可交换双球囊导管来引导内窥镜旁路:治疗恶性胃出口梗阻的一种改变实践的技术
- 批准号:
498860 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Operating Grants
Research and development of a virtual cardiopulmonary bypass/ECMO simulator using MR (Mixed Reality)
利用MR(混合现实)研发虚拟体外循环/ECMO模拟器
- 批准号:
23K15535 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated bypass of mitochondrial electron transport chain with artificial and endogenous substrates
NAD(P)H 醌氧化还原酶 1 (NQO1) 介导的人工和内源底物线粒体电子传递链旁路
- 批准号:
10789749 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Sediment transport mechanism on self-lining channel and application to abrasion countermeasures for sediment bypass tunnels
自衬通道输沙机理及在泥沙绕行隧道磨损对策中的应用
- 批准号:
23H01511 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Significance of the alteration of enterohepatic circulation in the mechanism of improvement of glucose metabolism after duodenal jejunal bypass
肠肝循环的改变在十二指肠空肠绕道术后糖代谢改善机制中的意义
- 批准号:
23K08146 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sex-differences in 5 year survival with percutaneous coronary intervention compared to coronary artery bypass graft surgery in patients with diabetes and multivessel disease
糖尿病和多支血管疾病患者经皮冠状动脉介入治疗与冠状动脉搭桥手术的 5 年生存率存在性别差异
- 批准号:
495441 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
The Role of Intraoperative Transesophageal Echocardiography During Isolated Coronary Artery Bypass Graft Surgery
术中经食管超声心动图在离体冠状动脉搭桥手术中的作用
- 批准号:
10738059 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别:
Racial Disparities in Sleep, Circadian Rhythm, and Glucoregulation Among Individuals Post-Coronary Artery Bypass Surgery
冠状动脉搭桥手术后个体在睡眠、昼夜节律和血糖调节方面的种族差异
- 批准号:
10750187 - 财政年份:2023
- 资助金额:
$ 33.93万 - 项目类别: