MECHANISM AND REGULATION OF NONHOMOLOGOUS DNA ENDJOINING

DNA非同源连接的机制和调控

基本信息

  • 批准号:
    6596588
  • 负责人:
  • 金额:
    $ 32.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-08-01 至 2008-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Acquired genetic mutations underlie all forms of cancer and are likely to be important in aging. DNA damage, a major cause of mutations, can occur on one DNA strand or both strands; in the latter case, a double-strand DNA break results. The two forms of double-strand break repair in multicellular eukaryotes are homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). This proposal is devoted to understanding the NHEJ pathway at the biochemical and genetic levels. The NHEJ pathway is the major pathway for repairing double-strand DNA breaks during G0, G1, and early S phases of the cell cycle; therefore, the understanding of NHEJ is of broad medical importance. The major effort of this proposal is to understand the biochemistry of key steps in the NHEJ pathway and to reconstitute the pathway with biochemically purified proteins. In Specific Aim 1, we test four hypotheses related to the earliest steps in NHEJ. In the first, we examine whether Ku recruits the Artemis:DNA-PKcs complex to a DNA end. In the second, we examine the point at which inositol phosphates might regulate NHEJ. In the third, we examine how protein phosphorylation affects the initial complex of proteins that are thought to bind at a broken DNA end. In the fourth, we use a murine mouse model to test for interference between proteins in the early phase of the NHEJ pathway. In Specific Aim 2, we examine how two broken DNA ends are brought into physicial proximity. Specifically, we test whether this can be achieved by the Ku:Artemis:DNAPKcs complex. In Specific Aim 3, we describe efforts to reconstitute the entire human NHEJ pathway using purified proteins. As part of this aim, we also test for roles of DNA polymerases, which are the one type of enzymatic activity yet to be definitively determined for NHEJ in higher eukaryotes. Specific Aim 4 is directed at defining the active site for the major nuclease in the NHEJ pathway, Artemis. This aim is also directed at understanding the region of interaction between Artemis and DNA-PKcs. Overall, this proposal represents a major concerted effort to deepen and complete our understanding of this primary pathway of repairing double-strand DNA breaks. The long-term medical benefit of a biochemically-defined NHEJ system includes the ability to test small molecule drug inhibitors for roles in cancer therapy.
描述(由申请人提供):获得性基因突变是所有癌症的基础,可能对衰老很重要。DNA损伤是突变的主要原因,可能发生在一条DNA链上,也可能发生在两条DNA链上;在后一种情况下,双链DNA断裂。多细胞真核生物双链断裂修复的两种形式是同源重组(homologous recombination, HR)和非同源DNA末端连接(nonhomologous DNA end joining, NHEJ)。本提案致力于从生化和遗传水平上理解NHEJ途径。在细胞周期的G0、G1和早期S期,NHEJ通路是修复双链DNA断裂的主要途径;因此,对NHEJ的理解具有广泛的医学意义。本课题的主要工作是了解NHEJ通路关键步骤的生物化学原理,并用生化纯化的蛋白质重建该通路。在具体目标1中,我们测试了与NHEJ最早步骤相关的四个假设。首先,我们研究了Ku是否将Artemis:DNA- pkcs复合物招募到DNA末端。在第二部分中,我们研究了肌醇磷酸可能调节NHEJ的点。在第三部分中,我们研究了蛋白质磷酸化如何影响被认为在断裂的DNA末端结合的初始蛋白质复合物。在第四项研究中,我们使用小鼠模型来测试NHEJ通路早期阶段蛋白之间的干扰。在具体目标2中,我们研究了两个断裂的DNA末端是如何进入物理接近的。具体来说,我们测试了Ku:Artemis:DNAPKcs复合物是否可以实现这一目标。在Specific Aim 3中,我们描述了使用纯化蛋白重建整个人类NHEJ通路的努力。作为这一目标的一部分,我们还测试了DNA聚合酶的作用,这是一种酶活性尚未明确确定的NHEJ在高等真核生物中的作用。特异性Aim 4旨在确定NHEJ途径中主要核酸酶Artemis的活性位点。这一目的也旨在了解Artemis和DNA-PKcs之间的相互作用区域。总的来说,这一建议代表了一项重大的共同努力,以加深和完成我们对修复双链DNA断裂的主要途径的理解。生物化学定义的NHEJ系统的长期医疗效益包括能够测试小分子药物抑制剂在癌症治疗中的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL R LIEBER其他文献

MICHAEL R LIEBER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL R LIEBER', 18)}}的其他基金

Mechanisms of Human Lymphoid Chromosomal Translocation
人类淋巴染色体易位的机制
  • 批准号:
    10219165
  • 财政年份:
    2016
  • 资助金额:
    $ 32.54万
  • 项目类别:
Mechanisms of Human Lymphoid Chromosomal Translocation
人类淋巴染色体易位的机制
  • 批准号:
    9756315
  • 财政年份:
    2016
  • 资助金额:
    $ 32.54万
  • 项目类别:
Mechanisms of Human Lymphoid Chromosomal Translocation
人类淋巴染色体易位的机制
  • 批准号:
    9099617
  • 财政年份:
    2016
  • 资助金额:
    $ 32.54万
  • 项目类别:
Site-Specific Recombination in Human Health & Disease
人类健康中的位点特异性重组
  • 批准号:
    10162067
  • 财政年份:
    2016
  • 资助金额:
    $ 32.54万
  • 项目类别:
Site-Specific Recombination in Human Health & Disease
人类健康中的位点特异性重组
  • 批准号:
    10400938
  • 财政年份:
    2016
  • 资助金额:
    $ 32.54万
  • 项目类别:
Site-Specific Recombination in Human Health & Disease
人类健康中的位点特异性重组
  • 批准号:
    10618161
  • 财政年份:
    2016
  • 资助金额:
    $ 32.54万
  • 项目类别:
Selective Inhibitors of the Artemis Endonuclease
Artemis 核酸内切酶的选择性抑制剂
  • 批准号:
    8420339
  • 财政年份:
    2012
  • 资助金额:
    $ 32.54万
  • 项目类别:
Selective Inhibitors of the Artemis Endonuclease
Artemis 核酸内切酶的选择性抑制剂
  • 批准号:
    8261909
  • 财政年份:
    2012
  • 资助金额:
    $ 32.54万
  • 项目类别:
Mechanism and Regulation of Nonhomologous DNA End Joining
非同源DNA末端连接的机制和调控
  • 批准号:
    8894424
  • 财政年份:
    2003
  • 资助金额:
    $ 32.54万
  • 项目类别:
Mechanism and Regulation of Nonhomologous DNA End Joining
非同源DNA末端连接的机制和调控
  • 批准号:
    7942230
  • 财政年份:
    2003
  • 资助金额:
    $ 32.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了