Ultra-low power wireless neural recording implant: novel pulse representation

超低功耗无线神经记录植入物:新颖的脉冲表示

基本信息

  • 批准号:
    7265461
  • 负责人:
  • 金额:
    $ 38.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-02-15 至 2011-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The overall goal of this project is to design a new generation of fully implantable flexible substrate microelectrode array probes to record neural activity from behaving rodents. In existing approaches, the behaving rodents are either tethered or encumbered by external devices strapped to their bodies. A fully implantable unit would allow improved characterization of brain function via neural recordings in rats in an unrestrained condition. The proposed device is a battery powered electronic chip that utilizes the state-of- the-art integrate-and-fire (IF) representation and proven protocols: microwire array, flexible substrate, and wireless communication. What makes this implantable specification possible is anew IF sampling principle that is able to reduce both the power dissipation and the necessary bandwidth to transmit high-resolution data. We anticipate that it is possible to build an implant that uses less than 2mW of total power dissipation to record, amplify, encode and transmit wirelessly 16 channels of field potentials and extracellular action for 72-96 hours depending on the data rates. An external signal reconstruction algorithm will output neural data with at least 40dB accuracy (better on high amplitude signal regions) at a 20 kHz sampling rate. In order to design, characterize, build and test in vivo the Florida Wireless Implantable Recording Electrodes (FWIRE), we specifically propose: 1. To design, fabricate in VLSI, test in vivo and formulate system specifications for an ultra low power 16- channel amplifier with pulsed output based on the novel integrate-and-fire sampling scheme. The overall power consumption of this subsystem will be below 1mW. 2. To design an ultra-power (1mW), low-bandwidth (500Kpulses/sec) wireless link and integrate the multiple modules (electrodes, integrate-and-fire amplifiers, communication link) into an implantable package using a flexible substrate. 3. To study in vivo the characteristics of FWIRE during the full duration of the implantable probe development. Bottlenecks in the design will be anticipated, found, and corrected; system performance will be fully characterized.
描述(由申请人提供):本项目的总体目标是设计新一代完全植入式柔性基底微电极阵列探针,以记录行为啮齿动物的神经活动。在现有的方法中,行为啮齿动物要么被拴在身上,要么被绑在身体上的外部设备所束缚。一个完全可植入的单元将允许通过在不受限制的条件下对大鼠进行神经记录来改善对大脑功能的表征。所提出的设备是一个电池供电的电子芯片,利用国家的最先进的集成和消防(IF)表示和成熟的协议:微丝阵列,柔性基板,和无线通信。使这种植入式规格成为可能的是新的IF采样原理,该原理能够降低功耗和传输高分辨率数据所需的带宽。我们预计,有可能构建一种植入物,其使用小于2 mW的总功耗来记录、放大、编码和无线传输场电位和细胞外作用的16个通道,持续72-96小时,具体取决于数据速率。外部信号重建算法将在20 kHz采样率下以至少40 dB的精度(在高振幅信号区域更好)输出神经数据。为了设计、表征、构建和体内测试佛罗里达无线植入式记录电极(FWIRE),我们特别提出:1。设计、制作一个基于新型积分触发采样方案的超低功耗16通道脉冲输出放大器,并进行体内测试和制定系统规范。该子系统的总功耗将低于1 mW。2.设计一个超功率(1 mW)、低带宽(500 Kpulses/sec)的无线链路,并使用柔性基板将多个模块(电极、集成触发放大器、通信链路)集成到植入式包装中。3.在体内研究FWIRE在植入式探头开发的整个过程中的特性。设计中的瓶颈将被预测、发现和纠正;系统性能将被充分表征。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JOHN G HARRIS其他文献

JOHN G HARRIS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JOHN G HARRIS', 18)}}的其他基金

Ultra-low power wireless neural recording implant: novel pulse representation
超低功耗无线神经记录植入物:新颖的脉冲表示
  • 批准号:
    7569424
  • 财政年份:
    2007
  • 资助金额:
    $ 38.93万
  • 项目类别:
Ultra-low power wireless neural recording implant: novel pulse representation
超低功耗无线神经记录植入物:新颖的脉冲表示
  • 批准号:
    7760181
  • 财政年份:
    2007
  • 资助金额:
    $ 38.93万
  • 项目类别:
Ultra-low power wireless neural recording implant: novel pulse representation
超低功耗无线神经记录植入物:新颖的脉冲表示
  • 批准号:
    7354840
  • 财政年份:
    2007
  • 资助金额:
    $ 38.93万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.93万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了