Acid-sensing ion channels and ischemic brain injury
酸敏感离子通道与缺血性脑损伤
基本信息
- 批准号:7225201
- 负责人:
- 金额:$ 33.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-24 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:ASIC channelAcidosisAcidsAffectAffinityAmilorideApoptoticAttentionAttenuatedBrainBrain InjuriesBrain IschemiaCell Culture SystemCell DeathCell Death ProcessCell LineCellsChemosensitizationDNA DamageDataDiffuseEffectivenessEquilibriumExcitatory Amino Acid AntagonistsFamilyGated Ion ChannelGlucoseGlutamatesHumanImageIndividualInfarctionInjuryIon ChannelIschemiaIschemic Brain InjuryIschemic StrokeKnockout MiceLearningLysineMediatingMediator of activation proteinMembraneMemoryMetabolicMethodsModelingMolecularMusMutationNecrosisNervous System PhysiologyNeuraxisNeuronal InjuryNeuronsNeurotoxinsOxygenPatch-Clamp TechniquesPathologicPermeabilityPlayPopulationProcessProteinsPublishingRangeRattusResearch PersonnelRoleSiteSite-Directed MutagenesisStimulation of Cell ProliferationStimulusStressStrokeSynapsesSynaptic plasticitySystemTechniquesTestingTimeToxic effectTransfectionbasecell injurydeprivationextracellularfallsin vitro Modelin vivomemberneuroprotectionneurotransmissionnovelperpetratorsprotective effectreceptorresearch studyresponsestroke therapyuptake
项目摘要
DESCRIPTION (provided by applicant): Brain ischemia is characterized by a marked, rapid fall in pH, which is assumed to be injurious although through multiple or uncertain mechanisms. The recent discovery in brain of Acid Sensing Ion Channels (ASICs), which are ubiquitous and function physiologically in synaptic neurotransmission, offers a diffuse, membrane based, receptor gated ion channel system, which will respond to the pathologic pH fall in brain ischemia. These H+ receptor gated channels are Na+ channels, a portion of which is also Ca2+ permeable. Acid sensitivity and Ca2+ permeability suggest a role in ischemic brain injury. Using patch clamp techniques and Ca2+ imaging of native neurons in cortical cultures we show the pH sensitivity of these channels and acid induced Ca2+ uptake. Both the acid induced channel currents and Ca2+ uptake are greatly potentiated in the setting of modeled ischemia (Oxygen Glucose Deprivation-OGD or NaCN). Thus these channels respond to both acidosis and "ischemia" in a mutually potentiating manner. The channel current and Ca2+ uptake are glutamate independent, are inhibited by ASIC pharmacologic blockade and by specific blockade of the ASIC 1a channel subunit. Thus, our preliminary studies support new cellular and molecular mechanisms mediating ischemic-acidosis induced brain injury, which we offer to dissect with the following Specific Aims: Single cell recording and transfection of individual ASIC subunit cDNAs will show that: 1) Ca2+ permeable ASICs produce cell injury in modeled ischemia via a subunit specific mechanism. Using rat and mouse global ischemia models and ASIC1a & ASIC2a knockout mice, we propose that: 2) Blockade of ASICs protects against ischemic brain injury in vivo. With molecular techniques including site directed mutagenesis we will describe endogenous Zn2+ modulation of Ca2+permeable ASICs: 3) Characterize high-affinity Zn2+ modulation of ASIC currents in acidosis and ischemia -induced cell injury. These experiments will describe new, glutamate independent, mechanisms of ischemic brain injury and the central role of ischemic-acidosis. ASIC blockade will offer new and potent potential therapy for stroke.
描述(由申请人提供):脑缺血的特征是 pH 值显着快速下降,尽管通过多种或不确定的机制,这被认为是有害的。最近在大脑中发现的酸感应离子通道 (ASIC) 无处不在,在突触神经传递中发挥生理功能,提供了一种弥散的、基于膜的、受体门控离子通道系统,该系统将对脑缺血时的病理性 pH 值下降做出反应。这些 H+ 受体门控通道是 Na+ 通道,其中一部分也是 Ca2+ 可渗透的。酸敏感性和 Ca2+ 通透性表明在缺血性脑损伤中发挥作用。使用膜片钳技术和皮质培养物中天然神经元的 Ca2+ 成像,我们显示了这些通道的 pH 敏感性和酸诱导的 Ca2+ 吸收。在模拟缺血(氧糖剥夺-OGD 或 NaCN)的情况下,酸诱导的通道电流和 Ca2+ 摄取均大大增强。因此,这些通道以相互增强的方式对酸中毒和“缺血”做出反应。通道电流和 Ca2+ 摄取与谷氨酸无关,可通过 ASIC 药理学阻断和 ASIC 1a 通道亚基的特异性阻断来抑制。因此,我们的初步研究支持介导缺血性酸中毒引起的脑损伤的新细胞和分子机制,我们将通过以下具体目标进行剖析:单细胞记录和单个 ASIC 亚基 cDNA 的转染将表明:1)Ca2+ 通透性 ASIC 通过亚基特异性机制在模型缺血中产生细胞损伤。使用大鼠和小鼠全局缺血模型以及 ASIC1a 和 ASIC2a 敲除小鼠,我们提出:2)封锁 ASIC 可防止体内缺血性脑损伤。通过包括定点诱变在内的分子技术,我们将描述 Ca2+ 可渗透 ASIC 的内源 Zn2+ 调节:3) 表征酸中毒和缺血诱导的细胞损伤中 ASIC 电流的高亲和力 Zn2+ 调节。这些实验将描述缺血性脑损伤的新的、不依赖于谷氨酸的机制以及缺血性酸中毒的核心作用。 ASIC 封锁将为中风提供新的、有效的潜在疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROGER Pancoast SIMON其他文献
ROGER Pancoast SIMON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROGER Pancoast SIMON', 18)}}的其他基金
MicroRNAs as Molecular Effectors of Seizure-preconditioning
MicroRNA 作为癫痫预适应的分子效应器
- 批准号:
8334745 - 财政年份:2011
- 资助金额:
$ 33.33万 - 项目类别:
A Novel Approach to Stroke Treatment: Acid-Sensing Iion Channel Inhibitors
治疗中风的新方法:酸敏感离子通道抑制剂
- 批准号:
7616402 - 财政年份:2009
- 资助金额:
$ 33.33万 - 项目类别:
Acid-sensing ion channels and ischemic brain injury
酸敏感离子通道与缺血性脑损伤
- 批准号:
7069542 - 财政年份:2005
- 资助金额:
$ 33.33万 - 项目类别:
Molecular determinants of epileptic brain injury
癫痫性脑损伤的分子决定因素
- 批准号:
6988568 - 财政年份:2005
- 资助金额:
$ 33.33万 - 项目类别:
Molecular determinants of epileptic brain injury
癫痫性脑损伤的分子决定因素
- 批准号:
7455100 - 财政年份:2005
- 资助金额:
$ 33.33万 - 项目类别:
Molecular determinants of epileptic bran injury
癫痫麸皮损伤的分子决定因素
- 批准号:
7068632 - 财政年份:2005
- 资助金额:
$ 33.33万 - 项目类别:
Acid-sensing ion channels and ischemic brain injury
酸敏感离子通道与缺血性脑损伤
- 批准号:
7596321 - 财政年份:2005
- 资助金额:
$ 33.33万 - 项目类别:
相似国自然基金
肿瘤微环境因子Lactic acidosis在肿瘤细胞耐受葡萄糖剥夺中的作用机制研究
- 批准号:81301707
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identification of factor to induce lactic acidosis in pre-metastatic niche
转移前微环境中诱导乳酸性酸中毒的因素的鉴定
- 批准号:
23K06620 - 财政年份:2023
- 资助金额:
$ 33.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Carbonic Anhydrase IX Acts as a Novel CO2/HCO3- Sensor and Protects the Pulmonary Endothelial Barrier from Acidosis
碳酸酐酶 IX 作为新型 CO2/HCO3- 传感器并保护肺内皮屏障免受酸中毒的影响
- 批准号:
10678442 - 财政年份:2023
- 资助金额:
$ 33.33万 - 项目类别:
Investigation based on both basic and clinical study about acidosis caused by piganide, SGLT2 inhibitor and surgical stress
皮甘尼、SGLT2抑制剂和手术应激引起的酸中毒的基础和临床研究
- 批准号:
23K08372 - 财政年份:2023
- 资助金额:
$ 33.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of proton-sensing G-protein-coupled receptors in the regulation of microglia and microvessel endothelial cell function in brain acidosis in a mouse ischemia reperfusion model.
质子感应 G 蛋白偶联受体在小鼠缺血再灌注模型脑酸中毒中调节小胶质细胞和微血管内皮细胞功能的作用。
- 批准号:
22K07342 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Magnetic Resonance Fingerprinting of Tumor Vascular Perfusion and Acidosis
肿瘤血管灌注和酸中毒的磁共振指纹图谱
- 批准号:
10593285 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10341493 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Acidosis in pulmonary endothelial injury and repair
酸中毒与肺内皮损伤与修复
- 批准号:
10558528 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Characterization of an abundant lactate-utilizing Campylobacter involved in mitigating rumen acidosis
参与减轻瘤胃酸中毒的丰富乳酸利用弯曲杆菌的表征
- 批准号:
557929-2021 - 财政年份:2022
- 资助金额:
$ 33.33万 - 项目类别:
Postgraduate Scholarships - Doctoral
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10278747 - 财政年份:2021
- 资助金额:
$ 33.33万 - 项目类别:
Impact of metabolic acidosis on muscle mitochondrial energetics, metabolic health and physical endurance in persons with chronic kidney disease
代谢性酸中毒对慢性肾病患者肌肉线粒体能量学、代谢健康和身体耐力的影响
- 批准号:
10671682 - 财政年份:2021
- 资助金额:
$ 33.33万 - 项目类别:














{{item.name}}会员




