Real-Time Model-Based Gait Retraining for Knee Osteoarthritis Rehabilitation

基于实时模型的膝骨关节炎康复步态再训练

基本信息

  • 批准号:
    7305926
  • 负责人:
  • 金额:
    $ 20.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-12 至 2009-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The long term objective of this application is to develop a novel rehabilitation approach to slow the progression of knee osteoarthritis, resulting in improved function and reduced pain for millions of patients. Unlike traditional rehabilitation approaches, the proposed approach is quantitative, combining patient-specific computer models with experimental gait analysis. The computer models are used to predict altered yet natural looking gait patterns that reduce detrimental knee loads. Subsequent gait analysis with real-time visual feedback is then used to train the patient to match the knee loads predicted by the computer model. The specific load targeted by gait retraining is the external knee adduction torque (i.e., the moment that contributes to medial compartment force), since this load is a strong indicator of knee osteoarthritis severity and progression. Initial application of the approach to two subjects but without real-time visual feedback yielded reductions as large as 50% in both peaks of the adduction torque curve, comparable to the results of high tibial osteotomy surgery but without surgical intervention. To investigate the feasibility of this long term objective, we propose to pursue three specific aims in a feasibility study study involving 10 patients with early knee osteoarthritis: Specific aim 1: Predict with a patient-specific computational model whether similar gait modifications exist for each patient that will significantly reduce both knee adduction torque peaks. Specific aim 2: Determine whether patients can achieve significant knee adduction torque reductions after eight gait retraining sessions using real-time model-based visual feedback. Specific aim 3: Determine whether significant knee adduction torque reductions can be maintained for at least one month following the completion of the gait retraining program. If successful, the proposed approach may permit customized gait retraining to be used to slow the progression of knee osteoarthritis or even as a preventative measure. The end result could be millions of patients with decreased pain and improved function who can delay or even avoid knee replacement surgery. Knee osteoarthritis afflicts millions of people in the United States, causing pain and limiting the ability to perform important daily activities such as walking and stair climbing. Using patient-specific computer models and experimental gait analysis, this research seeks to develop a novel rehabilitation approach to slow the progression of the disease. If successful, the approach would allow many patients to delay or possibly even avoid the need for knee replacement surgery in the future.
描述(申请人提供):这项申请的长期目标是开发一种新的康复方法来减缓膝骨性关节炎的进展,从而改善功能并减轻数百万患者的疼痛。与传统的康复方法不同,该方法是定量的,将患者特定的计算机模型与实验步态分析相结合。计算机模型被用来预测改变后的但看起来自然的步态模式,以减少有害的膝盖负荷。随后使用具有实时视觉反馈的步态分析来训练患者以匹配计算机模型预测的膝关节负荷。步态再训练所针对的特定负荷是膝关节外收扭矩(即产生内侧筋膜间隔力的时刻),因为该负荷是膝关节骨关节炎严重程度和进展的有力指标。在没有实时视觉反馈的情况下,将该方法最初应用于两名受试者,内收扭矩曲线的两个峰值的下降幅度高达50%,与胫骨高位截骨手术的结果相当,但没有手术干预。为了探索这一长期目标的可行性,我们建议在一项涉及10名早期膝骨性关节炎患者的可行性研究研究中追求三个具体目标:具体目标1:使用患者特定的计算模型预测每个患者是否存在类似的步态修改,从而显著降低两个膝关节内收扭矩峰值。具体目标2:使用基于实时模型的视觉反馈,确定患者在8次步态再训练后是否能够实现显著的膝关节内收扭矩减少。具体目标3:确定在完成步态再训练计划后,膝关节内收扭矩的显著减少是否能维持至少一个月。如果成功,建议的方法可能允许使用定制的步态再训练来减缓膝骨性关节炎的进展,甚至作为一种预防措施。最终结果可能是数以百万计的患者疼痛减轻,功能改善,他们可以推迟甚至避免膝关节置换手术。膝骨性关节炎在美国困扰着数百万人,会导致疼痛,并限制人们进行重要的日常活动,如步行和爬楼梯。使用特定于患者的计算机模型和实验步态分析,这项研究试图开发一种新的康复方法来减缓疾病的进展。如果成功,这种方法将允许许多患者推迟甚至可能避免未来进行膝关节置换手术的需要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BENJAMIN J FREGLY其他文献

BENJAMIN J FREGLY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BENJAMIN J FREGLY', 18)}}的其他基金

OpenSim Enhancements to Enable Computational Design of Personalized Treatments for Movement Impairments
OpenSim 增强功能可实现针对运动障碍的个性化治疗的计算设计
  • 批准号:
    10297893
  • 财政年份:
    2021
  • 资助金额:
    $ 20.84万
  • 项目类别:
OpenSim Enhancements to Enable Computational Design of Personalized Treatments for Movement Impairments
OpenSim 增强功能可实现针对运动障碍的个性化治疗的计算设计
  • 批准号:
    10482399
  • 财政年份:
    2021
  • 资助金额:
    $ 20.84万
  • 项目类别:
OpenSim Enhancements to Enable Computational Design of Personalized Treatments for Movement Impairments
OpenSim 增强功能可实现针对运动障碍的个性化治疗的计算设计
  • 批准号:
    10680443
  • 财政年份:
    2021
  • 资助金额:
    $ 20.84万
  • 项目类别:
Real-Time Model-Based Gait Retraining for Knee Osteoarthritis Rehabilitation
基于实时模型的膝骨关节炎康复步态再训练
  • 批准号:
    7495645
  • 财政年份:
    2007
  • 资助金额:
    $ 20.84万
  • 项目类别:
COMPUTATIONAL FRAMEWORK FOR SIMULATING JOINT MECHANICS
模拟关节力学的计算框架
  • 批准号:
    6465453
  • 财政年份:
    2002
  • 资助金额:
    $ 20.84万
  • 项目类别:
COMPUTATIONAL FRAMEWORK FOR SIMULATING JOINT MECHANICS
模拟关节力学的计算框架
  • 批准号:
    6732078
  • 财政年份:
    2002
  • 资助金额:
    $ 20.84万
  • 项目类别:
COMPUTATIONAL FRAMEWORK FOR SIMULATING JOINT MECHANICS
模拟关节力学的计算框架
  • 批准号:
    6603899
  • 财政年份:
    2002
  • 资助金额:
    $ 20.84万
  • 项目类别:

相似海外基金

Simulating chemical reactions on quantum computers
在量子计算机上模拟化学反应
  • 批准号:
    FT230100653
  • 财政年份:
    2024
  • 资助金额:
    $ 20.84万
  • 项目类别:
    ARC Future Fellowships
Human Computers as Instruments
人类计算机作为仪器
  • 批准号:
    AH/X008657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Research Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
  • 批准号:
    EP/Y036069/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Research Grant
Superconducting Circuits for Error-Resilient Quantum Computers
用于容错量子计算机的超导电路
  • 批准号:
    DE240101033
  • 财政年份:
    2024
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Discovery Early Career Researcher Award
Algorithms for simulation of strong-field multi-particle dynamics on quantum computers
量子计算机上强场多粒子动力学模拟算法
  • 批准号:
    24K08336
  • 财政年份:
    2024
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Birmingham City University and Minster Micro Computers Limited KTP 22_23 R2
伯明翰城市大学和明斯特微型计算机有限公司 KTP 22_23 R2
  • 批准号:
    10039149
  • 财政年份:
    2023
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Knowledge Transfer Partnership
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Continuing Grant
Travel: 25th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS) 2023
旅行:2023 年第 25 届国际 ACM SIGACCESS 计算机和辅助功能会议 (ASSETS)
  • 批准号:
    2401908
  • 财政年份:
    2023
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Standard Grant
FuSe-TG: Co-designing Novel Memristor Heterostructures for Brain Inspired Computers
FuSe-TG:为类脑计算机共同设计新型忆阻器异质结构
  • 批准号:
    2235474
  • 财政年份:
    2023
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Standard Grant
Singing voice synthesis that can form ensemble with humans and computers
人机合奏的歌声合成
  • 批准号:
    23K18474
  • 财政年份:
    2023
  • 资助金额:
    $ 20.84万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了