Using Nanotechnology to Regulate Integrin Clustering and Tensin Localization
利用纳米技术调节整合素聚类和张力蛋白定位
基本信息
- 批准号:7296136
- 负责人:
- 金额:$ 18.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-29 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAtomic Force MicroscopyBehaviorBindingBinding SitesBiologicalCell AdhesionCell physiologyCell-Matrix JunctionCellsCellular biologyComplexConfocal MicroscopyDNADNA Sequence RearrangementDevelopmentDoctor of PhilosophyEnsureFibronectinsFocal AdhesionsFutureGene ExpressionGoalsGrantImageImmunofluorescence ImmunologicIntegrin BindingIntegrinsKnowledgeLaboratoriesLigand BindingLigandsLocationMediatingMethodologyMethodsMicroscopyMolecularNIH 3T3 CellsNanostructuresNanotechnologyPathway interactionsPatternPenetrationPositioning AttributeProcessProductionProtein Tyrosine KinaseProteinsResearch PersonnelResolutionScanning Probe MicroscopyShapesSignal PathwaySignal TransductionSiteSurfaceTechnologyTimeWorkbasecancer cellcancer therapycell behaviorcell motilitycellular imagingcomputerized data processingconceptdensitydesigngangimage visualizationmigrationnanobiotechnologynanoengineeringnanofabricationnanometernanoscaleprogramssizetensin
项目摘要
DESCRIPTION (provided by applicant): The long-term goal is to develop nanobiotechnology that allows the understanding of the initial signal transduction process in time and in space, and with that knowledge to devise strategies to alter the behavior of cells in general, with focus on cancer cells in specific. The idea is based on the observation that clustering of integrin and other focal proteins such as tensin are correlated to the downstream cell signaling. By varying the geometric parameters of nanostructures of integrin-binding sites, such as size, shape, and separation, the localization of tensin at focal adhesion would change accordingly, thus altering the corresponding cell signaling pathways. The two co-PIs have complementary expertise in nanotechnology (Liu) and cell biology of focal adhesion involving tensin (Lo), respectively. Preliminary studies from the co-PI (Lo) laboratory reveal that tensin localization at focal adhesion impacts on corresponding cell functions such as motility and migration. Preliminary study from the PI (Liu) group has demonstrated that scanning probe microscopy based nanofabrication enables precise positioning of simple molecular ligands, proteins and DNA on surfaces. The first goal is to develop a new methodology, combined atomic force and confocal microscopy for single cell imaging and for visualization of protein complexes at focal adhesion. Confocal microscopy will be utilized to (a) reproduce previously known immunofluorescence studies in order to validate this new method; and (b) to guide atomic force microscopy (AFM) probes to penetrate into cells to reach focal adhesion sites for high resolution imaging of protein complexes. Arrays of nanostructures consisting of integrin-binding ligands such as fibronectin will be produced with designed size and geometry using Liu's nanofabrication methodologies. Finally, NIH 3T3 cells will be seeded onto these nanostructure arrays where integrin/tensin clusters will form, and be characterized using this combined AFM/confocal microscopy to reveal how the tensin localization varies as a function of the ligand nanostructures underneath. Once this concept of regulating tensin translocation via nanotechnology is proven, future work can be planned to investigate how cell functions can be regulated by forming designed integrin clusters and tensin location using ligand nanostructures underneath the cells. Formation of other protein complexes such as tyrosine kinases at focal adhesion may be regulated following the same concept. This nanoengineering approach should provide a new paradigm for controlling cell signaling and behavior, which enables new methods be developed for cancer therapy.
描述(由申请人提供):长期目标是开发纳米型技术,以了解时间和空间中的初始信号转导过程,并以这些知识来制定策略以改变细胞的行为,并侧重于特定的癌细胞。该想法基于这样的观察结果,即整联蛋白和其他焦点蛋白(如tensin)的聚类与下游细胞信号传导相关。通过改变整联蛋白结合位点的纳米结构的几何参数(例如大小,形状和分离),在焦点粘附处的Tensin的定位将相应地改变,从而改变相应的细胞信号传导途径。这两个Co-Pis分别具有纳米技术(LIU)和细胞生物学的互补专业知识,分别涉及Tensin(LO)(LO)。 CO-PI(LO)实验室的初步研究表明,局灶性粘附处的紧张定位会影响相应的细胞功能,例如运动和迁移。 PI(LIU)组的初步研究表明,扫描基于探针显微镜的纳米化表现可以使简单分子配体,蛋白质和DNA在表面上精确定位。第一个目标是开发一种新的方法论,将原子力和共聚焦显微镜组合起来,用于单细胞成像以及在局灶性粘附时可视化蛋白质复合物。共聚焦显微镜将用于(a)再现先前已知的免疫荧光研究,以验证这种新方法; (b)引导原子力显微镜(AFM)探针渗透到细胞中以达到局灶性粘附位点,以进行蛋白质复合物的高分辨率成像。使用LIU的纳米纳米制作方法,将生产由整联蛋白结合配体(例如纤连蛋白)组成的纳米结构阵列。最后,将NIH 3T3细胞接种到这些纳米结构阵列中,在这些纳米结构阵列中,整联蛋白/Tensin簇将形成,并使用此组合的AFM/共聚焦显微镜进行表征,以揭示Tensin定位如何随着下面的配体纳米结构的功能而变化。一旦证明了通过纳米技术调节Tensin易位的概念,就可以计划使用未来的工作来研究细胞功能如何通过使用细胞下方的配体纳米结构形成设计的整合素簇和Tensin位置来调节细胞功能。可以按照相同的概念来调节其他蛋白质复合物,例如局灶性粘附处的酪氨酸激酶。这种纳米工程方法应为控制细胞信号传导和行为提供新的范式,从而为癌症治疗开发新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GANG-YU LIU其他文献
GANG-YU LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GANG-YU LIU', 18)}}的其他基金
Nanostructures For Engineering Immune Responses of Dendritic Cells
用于工程树突状细胞免疫反应的纳米结构
- 批准号:
8517374 - 财政年份:2013
- 资助金额:
$ 18.45万 - 项目类别:
Nanostructures For Engineering Immune Responses of Dendritic Cells
用于工程树突状细胞免疫反应的纳米结构
- 批准号:
8640122 - 财政年份:2013
- 资助金额:
$ 18.45万 - 项目类别:
Using Nanotechnology to Regulate Integrin Clustering and Tensin Localization
利用纳米技术调节整合素聚类和张力蛋白定位
- 批准号:
7497482 - 财政年份:2006
- 资助金额:
$ 18.45万 - 项目类别:
Using Nanotechnology to Regulate Integrin Clustering and Tensin Localization
利用纳米技术调节整合素聚类和张力蛋白定位
- 批准号:
7114754 - 财政年份:2006
- 资助金额:
$ 18.45万 - 项目类别:
相似国自然基金
二维层状材料界面纳米摩擦行为的原子力显微探针操纵研究
- 批准号:51802053
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
电场作用下薄层液膜中缓蚀剂的吸脱附行为与缓蚀机理研究
- 批准号:51871105
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
复杂环境下石墨烯表面纳米摩擦行为调控及机理研究
- 批准号:51775105
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
离子对具有多环芳香结构的碳基表面动态润湿行为的影响机制研究
- 批准号:U1632135
- 批准年份:2016
- 资助金额:52.0 万元
- 项目类别:联合基金项目
溶剂依赖的石墨界面过程及其储钠行为的原位研究
- 批准号:21603175
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of interactions between von Willebrand factor and its binding partners
冯维勒布兰德因子与其结合伙伴之间的相互作用机制
- 批准号:
10629031 - 财政年份:2023
- 资助金额:
$ 18.45万 - 项目类别:
Immuno-stromal axes regulate fibroblast heterogeneity in tissue fibrosis and regeneration
免疫基质轴调节组织纤维化和再生中成纤维细胞的异质性
- 批准号:
10428972 - 财政年份:2022
- 资助金额:
$ 18.45万 - 项目类别:
Determining the role of cellular forces in endoderm differentiation and development
确定细胞力在内胚层分化和发育中的作用
- 批准号:
10527198 - 财政年份:2022
- 资助金额:
$ 18.45万 - 项目类别:
High throughput single cell linear displacement adhesion assay
高通量单细胞线性位移粘附测定
- 批准号:
10483237 - 财政年份:2022
- 资助金额:
$ 18.45万 - 项目类别:
Substrate Stiffness, Topography, and TRPV4 in AF Mechanotransduction
AF 机械传导中的基底刚度、形貌和 TRPV4
- 批准号:
10689826 - 财政年份:2022
- 资助金额:
$ 18.45万 - 项目类别: