Advanced prediction of GBM recurrence (TIME) for personalized radiotherapy
GBM 复发 (TIME) 的高级预测以进行个性化放疗
基本信息
- 批准号:10764140
- 负责人:
- 金额:$ 23.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-08 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Abstract:
Glioblastoma multiforme (GBM) is the most common primary brain malignancy in adults. GBM patients'
response to therapies including surgical resection, radiotherapy (RT), chemotherapy, and tumor treating fields
(TTF) is unsatisfactory, leading to a high recurrence rate, which is considered fatal. Salvage RT is often used to
delay recurrent GBM tumor growth and prolong patient survival. However, due to the diffusive nature of the
GBM cells, a large isotropic treatment margin (~2cm) is added to cover microscopic disease beyond the
radiographically confirmed tumor on magnetic resonance image (MRI). Because of the considerable overlap
between the recurrent and primary planning target volumes (PTV), growth delay from the additional salvage
radiation dose allowed by the normal organ tolerance is modest. A more significant, more effective dose is toxic
to organs at risk (OARs), including the brain stem, chiasm, optic nerves, and involved brain parenchyma, etc. To
safely escalate the dose, the recurrent treatment volume must be significantly reduced. Compared with the
radiologically confirmed tumor with added non-specific margin, the volume of the subclinical recurrence at an
earlier time point is markedly smaller. Our preliminary research based on the role of stem cell niches (SCN's) in
GBM cell migration shows the feasibility of voxel-wise prediction of GBM recurrences 2-3 months before they
become radiographically apparent. The prediction of the GBM recurrence (TIME) algorithm was
developed through training a machine learning classifier on longitudinal multi-parametric follow-up MR
images, quantifying the potential connection between the recurrence and SCN's in the brain. Given the promising
results, it is necessary to further improve the algorithm for more accurate prediction and establish its impact on
radiotherapy treatment planning before an interventional clinical trial. The following aims are proposed to
achieve the goal. Aim 1: Develop a neural network weakly supervised by stem cell niche locations to perform
voxel-level recurrence prediction. Aim 2a: Prospective patient image data acquisition, pre-processing, and
voxel-wise recurrence prediction model validation. Aim 2b: Demonstrate that significant dose escalation can be
achieved for early predicted recurrence. The project's success will further elucidate SCN's involvement in GBM,
provide a way to early predict recurrence, and help improve the targeting accuracy and efficacy of salvage
radiotherapy. The last point will pave a path towards a prospective interventional trial that can be practice-
changing for GBM management.
抽象的:
多形胶质母细胞瘤(GBM)是成年人中最常见的原发性脑恶性肿瘤。 GBM患者
对包括手术切除,放疗(RT),化学疗法和肿瘤治疗领域在内的疗法的反应
(TTF)不令人满意,导致高复发率,这被认为是致命的。打捞RT通常习惯
延迟复发性GBM肿瘤的生长和延长患者生存。但是,由于
GBM细胞添加了大型各向同性治疗缘(〜2cm),以覆盖超出的微观疾病
射线照相确认的磁共振图像(MRI)。因为重叠很大
在循环和初级计划目标量(PTV)之间,额外打捞的生长延迟
正常器官耐受性允许的辐射剂量适中。更重要,更有效的剂量是有毒的
面向有风险的器官(OARS),包括脑干,CHIASM,视神经和涉及的脑实质等
安全地升级剂量,必须大大减少复发量。与
放射学确认的肿瘤具有添加的非特异性边缘,亚临床复发的体积
较早的时间点明显较小。我们的初步研究基于干细胞生态位(SCN)在
GBM细胞的迁移显示了voxel the的可行性GBM复发的可行性2-3个月前2-3个月
在射线照相上显而易见。 GBM复发(时间)算法的预测为
通过训练纵向多参数随访的机器学习分类器MR开发
图像,量化大脑中复发与SCN之间的潜在连接。鉴于有希望的
结果,有必要进一步改善算法以更准确的预测并确定其对
介入临床试验之前的放疗治疗计划。提出以下目标
实现目标。目标1:开发一个由干细胞生态裂位置弱监督的神经网络以执行
体素级复发预测。 AIM 2A:前瞻性患者图像数据获取,预处理和
Voxel复发预测模型验证。 AIM 2B:证明可以显着剂量升级
实现了早期的复发。该项目的成功将进一步阐明SCN参与GBM,
提供一种预测复发的方法,并帮助提高打捞的靶向准确性和功效
放疗。最后一点将为实践的前瞻性介入试验铺平道路 -
更改GBM管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wensha Yang其他文献
Wensha Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wensha Yang', 18)}}的其他基金
Advanced prediction of GBM recurrence (TIME) for personalized radiotherapy
GBM 复发 (TIME) 的高级预测以进行个性化放疗
- 批准号:
10512641 - 财政年份:2022
- 资助金额:
$ 23.14万 - 项目类别:
Improving Pancreas RT Plans using Respiration-driven Anatomic Deformation
利用呼吸驱动的解剖变形改进胰腺 RT 计划
- 批准号:
8606447 - 财政年份:2013
- 资助金额:
$ 23.14万 - 项目类别:
Improving Pancreas RT Plans using Respiration-driven Anatomic Deformation
利用呼吸驱动的解剖变形改进胰腺 RT 计划
- 批准号:
8428477 - 财政年份:2013
- 资助金额:
$ 23.14万 - 项目类别:
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
强子对撞机上一对希格斯粒子产生和衰变过程的精确理论预言
- 批准号:12375076
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
强子三维结构分布函数的理论预言
- 批准号:12375080
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于机器学习方法设计和预言多组元合金体系材料的研究
- 批准号:92270104
- 批准年份:2022
- 资助金额:75.00 万元
- 项目类别:重大研究计划
次次领头阶anti-kT以及同类型的喷注函数和pA对撞中喷注向前产生的预言
- 批准号:12175016
- 批准年份:2021
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Advanced prediction of GBM recurrence (TIME) for personalized radiotherapy
GBM 复发 (TIME) 的高级预测以进行个性化放疗
- 批准号:
10512641 - 财政年份:2022
- 资助金额:
$ 23.14万 - 项目类别:
Quantitative CEST MRI for GBM Early Response Prediction and Biopsy Guidance
用于 GBM 早期反应预测和活检指导的定量 CEST MRI
- 批准号:
10531904 - 财政年份:2020
- 资助金额:
$ 23.14万 - 项目类别:
Quantitative CEST MRI for GBM Early Response Prediction and Biopsy Guidance
用于 GBM 早期反应预测和活检指导的定量 CEST MRI
- 批准号:
10319165 - 财政年份:2020
- 资助金额:
$ 23.14万 - 项目类别:
Quantitative MRSI for the prediction of response to chemoradiation therapy in GBM
定量 MRSI 用于预测 GBM 放化疗反应
- 批准号:
8820073 - 财政年份:2014
- 资助金额:
$ 23.14万 - 项目类别:
Quantitative MRSI for the prediction of response to chemoradiation therapy in GBM
定量 MRSI 用于预测 GBM 放化疗反应
- 批准号:
8591009 - 财政年份:2014
- 资助金额:
$ 23.14万 - 项目类别: