Advanced prediction of GBM recurrence (TIME) for personalized radiotherapy
GBM 复发 (TIME) 的高级预测以进行个性化放疗
基本信息
- 批准号:10764140
- 负责人:
- 金额:$ 23.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-08 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Abstract:
Glioblastoma multiforme (GBM) is the most common primary brain malignancy in adults. GBM patients'
response to therapies including surgical resection, radiotherapy (RT), chemotherapy, and tumor treating fields
(TTF) is unsatisfactory, leading to a high recurrence rate, which is considered fatal. Salvage RT is often used to
delay recurrent GBM tumor growth and prolong patient survival. However, due to the diffusive nature of the
GBM cells, a large isotropic treatment margin (~2cm) is added to cover microscopic disease beyond the
radiographically confirmed tumor on magnetic resonance image (MRI). Because of the considerable overlap
between the recurrent and primary planning target volumes (PTV), growth delay from the additional salvage
radiation dose allowed by the normal organ tolerance is modest. A more significant, more effective dose is toxic
to organs at risk (OARs), including the brain stem, chiasm, optic nerves, and involved brain parenchyma, etc. To
safely escalate the dose, the recurrent treatment volume must be significantly reduced. Compared with the
radiologically confirmed tumor with added non-specific margin, the volume of the subclinical recurrence at an
earlier time point is markedly smaller. Our preliminary research based on the role of stem cell niches (SCN's) in
GBM cell migration shows the feasibility of voxel-wise prediction of GBM recurrences 2-3 months before they
become radiographically apparent. The prediction of the GBM recurrence (TIME) algorithm was
developed through training a machine learning classifier on longitudinal multi-parametric follow-up MR
images, quantifying the potential connection between the recurrence and SCN's in the brain. Given the promising
results, it is necessary to further improve the algorithm for more accurate prediction and establish its impact on
radiotherapy treatment planning before an interventional clinical trial. The following aims are proposed to
achieve the goal. Aim 1: Develop a neural network weakly supervised by stem cell niche locations to perform
voxel-level recurrence prediction. Aim 2a: Prospective patient image data acquisition, pre-processing, and
voxel-wise recurrence prediction model validation. Aim 2b: Demonstrate that significant dose escalation can be
achieved for early predicted recurrence. The project's success will further elucidate SCN's involvement in GBM,
provide a way to early predict recurrence, and help improve the targeting accuracy and efficacy of salvage
radiotherapy. The last point will pave a path towards a prospective interventional trial that can be practice-
changing for GBM management.
文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wensha Yang其他文献
Wensha Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wensha Yang', 18)}}的其他基金
Advanced prediction of GBM recurrence (TIME) for personalized radiotherapy
GBM 复发 (TIME) 的高级预测以进行个性化放疗
- 批准号:
10512641 - 财政年份:2022
- 资助金额:
$ 23.14万 - 项目类别:
Improving Pancreas RT Plans using Respiration-driven Anatomic Deformation
利用呼吸驱动的解剖变形改进胰腺 RT 计划
- 批准号:
8606447 - 财政年份:2013
- 资助金额:
$ 23.14万 - 项目类别:
Improving Pancreas RT Plans using Respiration-driven Anatomic Deformation
利用呼吸驱动的解剖变形改进胰腺 RT 计划
- 批准号:
8428477 - 财政年份:2013
- 资助金额:
$ 23.14万 - 项目类别:
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非编码RNA与蛋白质相互作用预测算法的研究
- 批准号:31000586
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
Standard Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
- 批准号:
10103541 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
EU-Funded
Multi-variable based vegetation monitoring and prediction during droughts
干旱期间基于多变量的植被监测与预测
- 批准号:
FT230100209 - 财政年份:2024
- 资助金额:
$ 23.14万 - 项目类别:
ARC Future Fellowships














{{item.name}}会员




