Lineage-Specific Mechanisms of Cell Cycle Timing Control
细胞周期计时控制的谱系特异性机制
基本信息
- 批准号:10715965
- 负责人:
- 金额:$ 33.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimalsAtlasesBiological ModelsCaenorhabditis elegansCell Culture TechniquesCell CycleCell Cycle ProgressionCell Cycle RegulationCell Fate ControlCell LineageCellsCollaborationsDependenceDevelopmentDevelopmental ProcessDiseaseEmbryoEvolutionExhibitsGene Transfer TechniquesGeneticHomeostasisHumanImageIn VitroIndividualLabelLinkMalignant NeoplasmsMicroscopyModelingMolecularMolecular AnalysisNatural regenerationNematodaPatternRecording of previous eventsRegulationResourcesSame-sexSomatic CellStereotypingStructureStudy modelsTechniquesTechnologyTissuesWorkcell fate specificationcell transformationdeep learningdesigngene networkinsightmutantnovel strategiesprogramsreconstructionstem cellstooltranscriptomics
项目摘要
Project Summary
Decades of studying animal development and in vitro human cell culture have produced many observed tight
correlations between the duration of a cell’s cycle and its identity or the fates of its progeny. These links
represent a unique opportunity to understand the regulatory relationships between genetic programs of cell
fate and the regulation of the cell cycle, both central questions in the study of development, tissue
homeostasis, regeneration, and proliferative disorders such as cancer. The nematode Caenorhabditis elegans
has been a powerful model in which to study the regulation of cell fate and cell cycle control owing to its
genetic tractability, transparent body and embryo, and stereotyped cell lineage. Like most nematodes, C.
elegans exhibits eutely or a fixed number of somatic cells in each individual of the same sex. Cell fate in the
wild-type animal can thus be determined solely on the basis of its lineage history, for which we have developed
extensive tools and approaches for automated reconstruction via 3D timelapse microscopy. Using C. elegans
and genetic perturbations that result in transformations of cell fate with its lineage, in combination with
automated lineage tracing and spatial transcriptomics approaches, we will investigate the mechanisms by
which cell fate influences the duration of a stem cell’s cell cycle as well as the mechanisms by which the
duration of a cell cycle can influence cell fate.
The work described in this proposal represents a novel approach to considering these links, enabled by our
development of lineage tracing technologies and quantitative approaches to discovering structure in cell
lineages. Building on this expertise, as well as our imaging resources and collaborations with other tools
developers, theorists, and developmental biologists, we will continue to advance the state-of-the-art in lineage-
resolved studies of metazoan development. In particular, using our advances in deep learning techniques to
enable label-free automated lineage tracing in non-model species in which transgenesis remains impossible or
difficult, we will leverage an evolutionary approach to understanding the design principles of gene networks
that drive cell fate decisions and control cell cycle progression in the early embryo. Over the next five years we
will complete detailed characterizations of co-dependencies between cell cycle timing and cell fate in the C.
elegans embryo, create a molecular atlas of cell fate and cell cycle regulation in wild type and mutant C.
elegans where cell fate patterning is perturbed, and complete the reconstruction and quantitative analysis of
the embryonic lineages of S. stercoralis, P. pacificus, and C. angaria. In the long term, we plan to extend our
molecular analyses to these species as well, beginning with C. angaria as an attractive model for studying the
evolution of cell fate control networks and their interactions with regulators of the cell cycle. These insights will
be of broad value to our understanding of developmental processes, and the resources we will establish will
facilitate the work of others on diverse problems in emerging model systems.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavak Kirit Shah其他文献
Pavak Kirit Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavak Kirit Shah', 18)}}的其他基金
Cell lineage-based investigation of chemosensory neuron development
基于细胞谱系的化学感应神经元发育研究
- 批准号:
10523112 - 财政年份:2021
- 资助金额:
$ 33.81万 - 项目类别:
Cell lineage-based investigation of chemosensory neuron development
基于细胞谱系的化学感应神经元发育研究
- 批准号:
10373822 - 财政年份:2021
- 资助金额:
$ 33.81万 - 项目类别:
Understanding the Developmental Mechanisms that Ensure Robustness in Neuronal Patterning
了解确保神经元模式稳健性的发育机制
- 批准号:
10004225 - 财政年份:2019
- 资助金额:
$ 33.81万 - 项目类别:
Understanding the Developmental Mechanisms that Ensure Robustness in Neuronal Patterning
了解确保神经元模式稳健性的发育机制
- 批准号:
10251027 - 财政年份:2019
- 资助金额:
$ 33.81万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 33.81万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 33.81万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 33.81万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 33.81万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 33.81万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 33.81万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 33.81万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 33.81万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 33.81万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 33.81万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




