Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
基本信息
- 批准号:10714882
- 负责人:
- 金额:$ 37.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Bayesian MethodBiologicalBiological MarkersCardiovascular DiseasesChargeClinicalComplexDataData SetDiagnosisDiseaseGenomicsGenotypeHeterogeneityJointsMalignant NeoplasmsMedicineMethodsModelingMolecularMolecular DiseaseMultiomic DataNeurodegenerative DisordersPathway interactionsProductionPrognostic MarkerProteomicsTechnologyThe Cancer Genome AtlasTimeTissuesdata integrationdatabase of Genotypes and Phenotypesdisorder subtypeepigenomicsimprovedlearning strategymultiple omicsnovelpersonalized medicinepredict clinical outcomepredictive markerstatistical learningtranscriptomicstreatment strategyuser friendly software
项目摘要
Project Summary
Recent technological advances have enabled the production of vast amounts of diverse multi-omics data types (e.g.,
genomics, epigenomics, proteomics, transcriptomics) of complex diseases such as cancer, cardiovascular diseases
and neurodegenerative disorders. The integration of multi-omics data from those heterogeneous diseases can help
in unraveling the underlying biological mechanisms at multiple omics data levels, in improving prediction of clinical
outcomes, and to transform medicine, but at the same time presents significant challenges to identify important
biomarkers from a large size of heterogeneous molecular data points (i.e. hundreds of thousands). We will
develop and apply novel and powerful Bayesian statistical learning methods that will capture linear and nonlinear
relationships of multi-omics data. The methods will be used to identify i) important predictive pathways and
their corresponding important molecules; ii) clinically meaningful molecular disease subtypes, and iii) predictive
and prognostic biomarkers that contribute to the joint association (or regulatory networks) between omics data
types. The proposed method will be applied to multiple publicly available datasets such as The Cancer Genome
Atlas, dbGAP, and Genotype-Tissue Expression, and to non public data sets obtained from our collaborators. We
will develop robust, computationally efficient, and user-friendly software free of charge for the application of our
methods.
项目摘要
最近的技术进步使得能够产生大量不同的多组学数据类型(例如,
基因组学、表观基因组学、蛋白质组学、转录组学)复杂疾病,如癌症、心血管疾病
和神经退行性疾病。整合来自这些异质疾病的多组学数据可能会有所帮助
在多个组学数据水平上解开潜在的生物学机制,在改善临床预测方面
结果,并改变医学,但同时也提出了重大挑战,以确定重要的
来自大量异质分子数据点(即数十万)的生物标记物。我们会
开发和应用新颖而强大的贝叶斯统计学习方法,以捕捉线性和非线性
多组学数据之间的关系。这些方法将被用来识别i)重要的预测途径和
其相应的重要分子;ii)具有临床意义的分子疾病亚型,以及iii)预测性
以及有助于组学数据之间的联合关联(或监管网络)的预后生物标记物
类型。建议的方法将应用于多个公开可用的数据集,如癌症基因组
以及从我们的合作者那里获得的非公开数据集。我们
将为我们的应用程序免费开发健壮、计算高效和用户友好的软件
方法:研究方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian framework for modeling COVID-19 case numbers through longitudinal monitoring of SARS-CoV-2 RNA in wastewater.
通过纵向监测废水中的 SARS-CoV-2 RNA 对 COVID-19 病例数进行建模的贝叶斯框架。
- DOI:10.1002/sim.10009
- 发表时间:2024
- 期刊:
- 影响因子:2
- 作者:Dai,Xiaotian;Acosta,Nicole;Lu,Xuewen;Hubert,CaseyRJ;Lee,Jangwoo;Frankowski,Kevin;Bautista,MariaA;Waddell,BarbaraJ;Du,Kristine;McCalder,Janine;Meddings,Jon;Ruecker,Norma;Williamson,Tyler;Southern,DanielleA;Hollman,Jordan;
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thierry Chekouo Tekougang其他文献
Thierry Chekouo Tekougang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 37.47万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 37.47万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 37.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 37.47万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 37.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 37.47万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 37.47万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 37.47万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 37.47万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 37.47万 - 项目类别:
Studentship