Modeling seizures in patients with focal epilepsy
局灶性癫痫患者的癫痫发作建模
基本信息
- 批准号:10716792
- 负责人:
- 金额:$ 38.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:Absence EpilepsyAccountingAddressAffectAmericanAreaBayesian ModelingBrainClinicalColoradoDataData SetDiagnosisDiseaseEarly treatmentEarthquakesEpilepsyEvaluationEventFrequenciesGoalsGrantHeterogeneityHumanIndividualJointsLungMethodologyMethodsModelingModernizationMultiple SclerosisNatureObservational StudyOperative Surgical ProceduresOutcomePartial EpilepsiesPatientsPatternPharmaceutical PreparationsPhysiciansPopulationProbabilityProcessRecording of previous eventsRecurrenceResearchResistanceSeizuresStatistical Data InterpretationStatistical MethodsSubgroupTechnologyTimeUnited StatesVisualizationWorkasthma exacerbationclinically relevantcostexperiencegraphical user interfacehuman dataimprovedindividual variationlifetime riskmembernoveloptimal treatmentspersonalized predictionspredictive modelingpredictive toolssocial mediatherapy resistanttooluser-friendlyweb app
项目摘要
Abstract
With an estimated annual cost of $12.5 billion in the United States, epilepsy affects approximately 3.4 million
Americans and carries a lifetime risk of around 3%. The most common form of epilepsy is focal in nature,
meaning seizures arise from a restricted part of the brain. It remains a significant challenge to predict who will
respond well to treatment despite modern technology and research, largely due to the heterogeneity of focal
epilepsy. Existing statistical methods to analyze seizure data do not appropriately address the within- and
between-individual variation in epileptic seizures over time.
We propose to leverage our access to the Human Epilepsy Project (HEP1 and HEP2), an observational study
of 450 patients with focal epilepsy that tracked seizures longitudinally, and our statistical and clinical expertise
to develop novel dynamic prediction models for seizure frequency over time. The daily seizure data from HEP
show (1) subgroups of individuals with different seizure trajectories and (2) clumping of seizures, in which a
patient is more likely to experience subsequent seizures following a seizure episode. Dynamic prediction
models have been used successfully in other clinical areas besides epilepsy, but they do not allow for
subgroups of trajectories. Similarly, clumping of events has been handled with the Hawkes process in
association models where a homogenous population is assumed. Instead, we seek to predict occurrence of
events and understand covariate effects on processes where subgroups of trajectories exist. We hypothesize
that accounting for subgroups of individual trajectories and clumping of seizures will provide more accurate
and precise prediction of seizure outcomes.
We plan to develop novel models for prediction of seizure events through the following aims: (i) Develop a
Bayesian nonparametric models for dynamic personalized prediction of seizures over time. We will use the
HEP1 dataset to predict longitudinal seizure count and occurrence that allows for subgroups of trajectories and
will evaluate the methods using HEP2 data, (ii) Develop a novel Dirichlet Process Mixture Hawkes process
model for personalized prediction of recurrent event data that will allow for subgroups and clumping of events;
and will compare to existing approaches to handle clumping, and (iii) Develop an R package and a shiny
application to implement and illustrate the novel methods. The expected outcomes of this work are both
clinically and statistically significant: a) a shiny application tool to obtain tailored predictions of longitudinal
seizure trajectory based on seizure history, treatment and other clinically relevant covariates that will help
patients and clinicians identify optimal treatment earlier in the personalized course of the patient’s disease; and
b) the new methods will be relevant to other epilepsy types and other conditions, for example in modeling
relapses in multiple sclerosis.
摘要
在美国,癫痫每年的估计费用为125亿美元,影响约340万人
美国人,一生的风险约为3%。癫痫最常见的形式是局灶性的,
这意味着癫痫发作是由大脑的某个特定区域引起的预测谁将成为一个重大挑战,
尽管有现代技术和研究,但对治疗反应良好,这主要是由于病灶的异质性。
癫痫分析缉获数据的现有统计方法没有适当地解决内部和外部因素,
癫痫发作随时间的个体间差异。
我们建议利用我们对人类癫痫项目(HEP 1和HEP 2)的访问,这是一项观察性研究
450例局灶性癫痫患者纵向追踪癫痫发作,我们的统计和临床专业知识
开发癫痫发作频率随时间变化的新型动态预测模型。HEP的每日发作数据
显示(1)具有不同癫痫发作轨迹的个体的亚组和(2)癫痫发作的聚集,其中
患者更可能在癫痫发作后经历随后的癫痫发作。动态预测
模型已经成功地用于癫痫以外的其他临床领域,但它们不允许
轨迹的子组。类似地,事件的聚集已经用Hawkes过程处理,
假设一个同质群体的关联模型。相反,我们试图预测
事件和理解协变量对轨迹子组存在的过程的影响。我们假设
考虑到个体轨迹的亚组和癫痫发作的聚集,
精确预测癫痫发作的结果
我们计划通过以下目标开发用于预测癫痫发作事件的新模型:(i)开发一个
贝叶斯非参数模型用于癫痫发作随时间的动态个性化预测。我们将使用
HEP 1数据集预测纵向癫痫发作计数和发生率,允许轨迹和
将使用HEP 2数据评估方法,(ii)开发一种新的Dirichlet过程混合Hawkes过程
用于对重复事件数据进行个性化预测的模型,该模型将允许对事件进行分组和聚类;
并将与现有的方法来处理结块,和(iii)开发一个R包和一个闪亮的
应用程序来实现和说明新的方法。这项工作的预期成果是
具有临床和统计学意义:a)一种闪亮的应用工具,用于获得纵向
基于癫痫发作史、治疗和其他临床相关协变量的癫痫发作轨迹,
患者和临床医生在患者疾病的个性化过程中更早地确定最佳治疗;以及
B)新方法将与其他癫痫类型和其他条件相关,例如在建模中
多发性硬化症的复发
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACQUELINE A. FRENCH其他文献
JACQUELINE A. FRENCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JACQUELINE A. FRENCH', 18)}}的其他基金
HARKOSERIDE (ADD 234037) AS ADJUNCTIVE THERAPY IN PTS W PARTIAL SEIZURES
Harkoseride (ADD 234037) 作为 PTS W 部分性癫痫发作的辅助治疗
- 批准号:
6565849 - 财政年份:2001
- 资助金额:
$ 38.09万 - 项目类别:
HARKOSERIDE (ADD 234037) AS ADJUNCTIVE THERAPY IN PTS W PARTIAL SEIZURES
Harkoseride (ADD 234037) 作为 PTS W 部分性癫痫发作的辅助治疗
- 批准号:
6468099 - 财政年份:2000
- 资助金额:
$ 38.09万 - 项目类别:
相似海外基金
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mighty Accounting - Accountancy Automation for 1-person limited companies.
Mighty Accounting - 1 人有限公司的会计自动化。
- 批准号:
10100360 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Collaborative R&D
Accounting for the Fall of Silver? Western exchange banking practice, 1870-1910
白银下跌的原因是什么?
- 批准号:
24K04974 - 财政年份:2024
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Making Every Drop Count: Accounting for Spatiotemporal Variability of Water Needs for Proactive Scheduling of Variable Rate Irrigation Systems
CPS:中:让每一滴水都发挥作用:考虑用水需求的时空变化,主动调度可变速率灌溉系统
- 批准号:
2312319 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Standard Grant
A New Direction in Accounting Education for IT Human Resources
IT人力资源会计教育的新方向
- 批准号:
23K01686 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An empirical and theoretical study of the double-accounting system in 19th-century American and British public utility companies
19世纪美国和英国公用事业公司双重会计制度的实证和理论研究
- 批准号:
23K01692 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Analysis of the Value Effect: An Accounting Viewpoint
价值效应的实证分析:会计观点
- 批准号:
23K01695 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accounting model for improving performance on the health and productivity management
提高健康和生产力管理绩效的会计模型
- 批准号:
23K01713 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Role of Not-for-Profit Entities and Their Accounting Standards to Be Unified
非营利实体的新角色及其会计准则将统一
- 批准号:
23K01715 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
$ 38.09万 - 项目类别: