Project 3: Inter-Relationships and Prognostic Significance of Breast Cancer Radiomic Risk Features, Tissue Microenvironment, and Adiposity
项目 3:乳腺癌放射风险特征、组织微环境和肥胖的相互关系和预后意义
基本信息
- 批准号:10716156
- 负责人:
- 金额:$ 29.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-19 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAdipose tissueAmericanArchitectureArtificial IntelligenceAsian AmericansBiological AssayBiological MarkersBloodBody fatBody mass indexBreastBreast Cancer ModelBreast Cancer PatientBreast Cancer Risk FactorBreast Cancer geneCD36 geneCD8B1 geneCalibrationCancer PrognosisCd68Cessation of lifeCharacteristicsChineseClinical MarkersCohort StudiesDiseaseDisparityERBB2 geneEarly DiagnosisEarly treatmentEstrogen ReceptorsEstrogensEthnic OriginEthnic PopulationEvaluationFatty acid glycerol estersGene Expression ProfileGoalsHawaiiHealthHigh Risk WomanImageIncidenceJapanJapaneseJapanese AmericanJointsLinkMachine LearningMammary NeoplasmsMammographic DensityMammographic screeningMammographyMeasuresMediatingMinorityMinority WomenMolecularMorbidity - disease rateNative HawaiianNative Hawaiian or Other Pacific IslanderObesityOrganOutcomePacific IslandsParticipantPathologyPatternPersonal SatisfactionPhenotypePopulationPopulation SciencesPostmenopausePreventionPrimary PreventionProgesterone ReceptorsPrognosisRaceReportingResearchResidual stateResourcesRiskRisk FactorsSourceSubgroupSurvival AnalysisTherapeuticTissue BanksTissuesTranslatingTumor MarkersVisceralVisceral fatVisitWomanZNF217 geneanticancer researchbreast cancer survivalbreast densitybreast imagingcancer health disparitycancer survivalclinically relevantcohortcomparativedeep learningethnic differenceethnic minorityexperiencegenetic risk factorhormone receptor-positiveimaging biomarkerimprovedindividualized medicinemalignant breast neoplasmmammography registrymigrationminority healthminority health disparitymodifiable riskmolecular modelingmolecular subtypesmortalitymulti-ethnicnano-stringprognosticprognostic modelprognostic significanceprotein biomarkerspublic health relevanceracial differenceracial diversityracial populationradiomicsreproductiverisk prediction modelscreeningsubcutaneoustissue biomarkerstumortumor registryvirtual
项目摘要
SUMMARY / ABSTRACT
The risk of breast cancer among U.S. women dramatically differs across racial and ethnic populations.
Nonetheless, Asian American and Native Hawaiian/Pacific Islander (AANHPI) ethnic minority women have been
historically underrepresented in breast cancer research. Consequently, there are major gaps in understanding
the basis of disparities in these populations including high incidence and mortality among Native Hawaiians and
a steadily rising incidence with comparatively favorable outcomes among Japanese Americans. Obesity and
breast density, established breast cancer risk factors, vary widely across AANHPI women and have direct
implications for mammographic screening and primary prevention. Our research to date provides strong
evidence that body fat distribution, including visceral adipose tissue (VAT), is an important predictor of breast
cancer risk. The influence of adiposity on breast density and other aspects of breast architecture that can be
discerned through mammographic screening (e.g. radiomic features) is not well understood. Our long-term goal
is to elucidate the breast cancer disparities seen in understudied minority AANHPI subgroups (Native Hawaiian,
Micronesian, Japanese, Chinese, Filipina) that can be translated to improved prevention, early detection, and
therapeutic strategies. Our central hypothesis is that established radiomic risk features have unique
associations with breast cancer incidence in AANHPI subgroups and that they are correlated with tissue
biomarkers of risk and prognosis and with obesity, especially VAT. Study resources include the statewide
Hawai`i Pacific Islands Mammography Registry linked to the SEER Hawai`i Tumor Registry and its Residual
Tissue Repository (RTR), and to the Hawai`i component of the Multiethnic Cohort Study (MEC). Our study is
focused on the minority health of AANHPI, with the following aims: 1) Characterize the relationships of
established breast imaging radiomic risk features with tissue protein biomarker expression profiles reflecting
the tissue microenvironment and breast cancer prognosis and with disease-specific survival; 2) Characterize
the joint relationships of breast radiomic risk features and different measures of adiposity, including VAT, with
post-menopausal breast cancer risk among Native Hawaiian, Japanese American, and White MEC
participants. 3) Calibrate commonly used risk prediction models for breast cancer by including established
breast radiomic (AI and machine learning) risk features from 2D and 3D mammography in AAPHI and White
women overall and by estrogen/progesterone receptor and HER-2 status. The expected outcome of the
proposed study is to further our understanding of unique relationships between imaging biomarkers derived
from advanced machine learning approaches and race/ethnicity, tissue molecular characteristics and adiposity
phenotypes, which will improve risk and prognosis model accuracy and better identify high risk women for further
assessment or tailored therapy.
摘要 /摘要
在种族和族裔人群中,美国女性患乳腺癌的风险截然不同。
尽管如此,亚裔美国人和夏威夷人/太平洋岛民(AANHPI)少数民族妇女已经
从历史上看,乳腺癌研究的人为不足。因此,理解有重大差距
这些人群差异的基础,包括夏威夷原住民和
日裔美国人的发病率稳步上升,结果相对较好。肥胖和
乳腺癌密度是建立的乳腺癌危险因素,在AANHPI妇女中差异很大,并且直接
对乳房X线学筛查和主要预防的影响。迄今为止我们的研究提供了强大的
有证据表明体内脂肪分布,包括内脏脂肪组织(VAT),是乳房的重要预测指标
癌症风险。肥胖对乳房密度和乳房结构其他方面的影响可能是
通过乳房X线学筛查(例如放射线特征)分辨出尚不清楚。我们的长期目标
是为了阐明在少数族裔AANHPI亚组中看到的乳腺癌差异(本地夏威夷人,
可以翻译成改进的预防,早期检测和
治疗策略。我们的中心假设是,已建立的放射线风险特征具有独特
与AANHPI亚组中乳腺癌发病率的关联,并与组织相关
风险和预后的生物标志物以及肥胖,尤其是增值税。学习资源包括全州
夏威夷太平洋岛屿乳房X线摄影注册表与夏威夷先知肿瘤注册中心有关
组织存储库(RTR),以及多民族队列研究(MEC)的夏威夷成分。我们的研究是
专注于Aanhpi的少数族裔,其目的是:1)表征
具有组织蛋白生物标志物表达曲线的建立乳房成像的放射性风险特征反映
组织微环境和乳腺癌预后以及疾病特异性生存; 2)表征
乳房放射素风险特征的联合关系和包括增值税在内的不同措施,
夏威夷原住民,日裔美国人和白色MEC的绝经后乳腺癌风险
参与者。 3)通过包括已建立的乳腺癌校准常用的风险预测模型
乳房放射线(AI和机器学习)风险特征来自AAPHI和白色的2D和3D乳房X线摄影
妇女总体,雌激素/孕酮受体和HER-2状态。预期的结果
拟议的研究是为了进一步了解成像生物标志物之间的独特关系
从先进的机器学习方法和种族/种族,组织分子特征和肥胖
表型将提高风险和预后模型的准确性,并更好地识别高风险女性以进一步
评估或量身定制的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN Alan SHEPHERD其他文献
JOHN Alan SHEPHERD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN Alan SHEPHERD', 18)}}的其他基金
Novel Imaging Methods to Determine Breast Density
确定乳房密度的新成像方法
- 批准号:
7046575 - 财政年份:2005
- 资助金额:
$ 29.07万 - 项目类别:
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABCC2转运蛋白在克氏原螯虾腹部肌肉中抗汞积累特性研究
- 批准号:32302982
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
- 批准号:
10718333 - 财政年份:2023
- 资助金额:
$ 29.07万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10893258 - 财政年份:2022
- 资助金额:
$ 29.07万 - 项目类别: