Plant terpenoids: Deciphering metabolic pathways and improving production in microbes
植物萜类化合物:破译代谢途径并提高微生物的产量
基本信息
- 批准号:10714595
- 负责人:
- 金额:$ 39.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationBiochemicalBiological AssayBiomanufacturingDigitalis (genus)EngineeringGene ClusterGenomicsKnowledgeLifeMedicineMetabolic PathwayMethodsMicrobeMilletMiningPathway interactionsPlant ExtractsPlant GenomePlantsPrevalenceProductionProductivityPublic HealthResearchRouteSaffronSourceTerpenesTimeWorkYeastsanalogcost effectivehuman diseaseimprovedmetabolomicsnovelpreventprogramsreconstitutiontranscriptomics
项目摘要
Beyond their prevalence in everyday life, many plant terpenoids have life-saving medicinal applications for a
variety of human diseases. Despite their clear medicinal importance, it remains unclear how plants synthesize
most plant terpneoids. This knowledge gap prevents us from developing a better method to access terpenoids
since medicinal terpenoids are extracted from plants with meager yields. This research program aims to
accelerate the identification of plant terpenoid biosynthetic pathways and to improve plant terpenoid production
in microbes. Synthesizing plant terpenoids in microbes is a far more cost-effective approach as it can significantly
enhance terpenoid productivity and shorten production time. We developed an integrated workflow capable of
high-throughput characterization of multiple plant terpenoid pathways in parallel. This workflow combines
genomic mining, transcriptomic analysis, metabolomics, and biochemical assays for terpenoid pathway
elucidation followed by pathway reconstitution in engineered microbes for high-titer terpenoid production. Our
workflow is unique in that it includes gene clusters in plant genomes as an untapped source for uncovering novel
plant biosynthetic pathways. Another unique feature of our workflow is that we use a highly engineered yeast
strain as a platform to produce plant specialized terpenoids. This highly productive platform strain sets the stage
for cost-effective production of any of the >80,000 terpenoids and infinite numbers of terpenoid analogs. In this
research program, we will apply this workflow to decipher multiple plant terpenoid pathways, including valuable
mono-, di-, sesqui-, tri-, and tetra-terpenoid synthetic routes in foxglove, millet, crocus, and other plant species.
Progress from the proposed work will advance fundamental knowledge regarding how plants synthesize
medicinally important or biologically active terpenoids. It will also transform the biomanufacturing of plant-based
medicines for renewable and cost-effective production.
除了它们在日常生活中的普遍性之外,许多植物萜类化合物还具有挽救生命的医药应用,
各种人类疾病。尽管它们在医学上的重要性显而易见,但植物如何合成
大多数植物萜类。这种知识差距阻碍了我们开发更好的方法来获取萜类化合物
因为药用萜类化合物是从植物中提取的,产量很低。该研究计划旨在
加快植物萜类生物合成途径的鉴定,提高植物萜类的产量
在微生物中。在微生物中合成植物萜类化合物是一种更具成本效益的方法,
提高了萜类化合物的产率,缩短了生产时间。我们开发了一个集成的工作流程,
并行地高通量表征多种植物萜类化合物途径。此工作流结合了
萜类化合物途径的基因组挖掘、转录组学分析、代谢组学和生化测定
阐明,然后在工程化微生物中进行途径重建,用于高效价萜类化合物生产。我们
工作流程是独特的,因为它包括植物基因组中的基因簇,作为发现新的
植物生物合成途径我们工作流程的另一个独特之处是我们使用了一种高度工程化的酵母
菌株作为生产植物特化萜类化合物平台。这种高产的平台菌株为
用于成本有效地生产> 80,000种萜类化合物和无限数量的萜类化合物类似物中的任何一种。在这
研究计划,我们将应用这个工作流程来破译多种植物萜类化合物的途径,包括有价值的
在毛地黄、小米、番红花和其它植物物种中的单萜、二萜、倍半萜、三萜和四萜类化合物合成路线。
这项工作的进展将推进关于植物如何合成的基础知识
医学上重要的或具有生物活性的萜类化合物。它还将改变植物基生物制造业,
可再生和具有成本效益的生产。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Wang其他文献
Zhen Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Wang', 18)}}的其他基金
Synergistic interactions of hypertension and diabetes in promoting kidney injury
高血压和糖尿病协同作用促进肾损伤
- 批准号:
9295148 - 财政年份:2017
- 资助金额:
$ 39.88万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 39.88万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 39.88万 - 项目类别:
Standard Grant