Optogenetic silencing to achieve antiarrhythmic effect of renal denervation in chronic heart failure
光遗传学沉默实现肾去神经支配慢性心力衰竭的抗心律失常作用
基本信息
- 批准号:10714486
- 负责人:
- 金额:$ 59.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-28 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AnimalsAnti-Arrhythmia AgentsAortaArrhythmiaAttenuatedBlood VesselsCalciumCalmodulinCardiacCause of DeathCellsChronicClinicClinicalCongestive Heart FailureConsciousDataDenervationDependovirusGangliaGenesGeneticGranulocyte-Macrophage Colony-Stimulating FactorGranulocyte-Macrophage Colony-Stimulating Factor ReceptorsIn VitroInfectionInflammatoryInfusion proceduresInterleukin-1 betaInterventionKidneyLightLinkMacrophageMacrophage ActivationMeasuresMediatingMediatorMicrogliaMolecularNerveNeurogliaNeuronsOperative Surgical ProceduresOpsinPathologyPathway interactionsPatientsPharmaceutical PreparationsPhosphotransferasesPopulationPredispositionProductionPrognosisQuality of lifeRattusRenal Artery StenosisReportingRoleSafetySerumSeverity of illnessSignal PathwaySignal TransductionSpecificityStructure of stellate ganglionTNF geneTechniquesTestingTherapeuticTissuesTransfectionVentricularVentricular Arrhythmiadesignexcitatory neuronimprovedimproved outcomein vivokidney dysfunctionminiaturizemonocytemortalitynerve supplyneuroinflammationneuronal excitabilitynovelnovel therapeutic interventionoptogeneticspromoterreinnervationrelease factorwireless
项目摘要
Project Summary
Ventricular arrhythmia is the leading cause of death for chronic heart failure (CHF) patients. Although the
therapeutic potential of renal denervation (RDN) for ventricular arrhythmias has been reported extensively, RDN-
induced adverse complications severely limit its use in the clinic. Our recent study revealed that macrophage
expansion and neuroinflammation in the stellate ganglion (SG) contribute to CHF-increased cell excitability of
cardiac sympathetic postganglionic (CSP) neurons, which subsequently promotes cardiac sympathetic
overactivation and ventricular arrhythmogenesis in CHF rats. Granulocyte-macrophage colony-stimulating factor
(GM-CSF) is a crucial mediator in macrophage activation. Our pilot data showed that RDN attenuates cardiac
sympathetic overactivation and ventricular arrhythmias, which are accompanied by the marked reduction of GM-
CSF level and macrophage activation in SGs in CHF rats. However, it remains unclear if the antiarrhythmic effect
of RDN is achieved via attenuating GM-CSF-mediated inflammatory pathways in SGs in CHF. Following the
discovery of the antiarrhythmic mechanisms of RDN, this proposal aims to develop a novel clinical intervention
to achieve the therapeutic role of RDN and avoid its limitations. Since sympathetic innervation of the kidney
originates primarily from neurons in the aorticorenal ganglion (ARG), targeting ARG neurons could be a logical
therapeutic strategy for achieving the antiarrhythmic role of RDN. Considering the advantages of optogenetics,
including rapid, specific control of neuronal activities by light-sensitive opsins, adeno-associated-virus-
Archaerhodopsin (ArchT, an inhibitory light-sensitive opsin) gene will be transfected into ARG neurons in CHF
rats. Specificity of neuronal expression of ArchT in ARG neurons will be achieved by linking a neuron-specific
promoter to the ArchT gene. Continual optogenetic silencing in ARG neurons will be achieved by illuminating a
LED probe that is controlled and powered wirelessly in freely moving animals. We hypothesize that optogenetic
inhibition of ARG neurons would reduce CHF-elevated GM-CSF level in SGs, which subsequently alleviates
macrophage activation and neuroinflammation in SGs, thereby attenuating CSP neuronal excitability, cardiac
sympathetic overactivation, and ventricular arrhythmogenesis in CHF. Using multi-faceted technical approaches
ranging from whole-animals to cellular-molecular levels, we will design in vivo and in vitro studies to assess these
questions. Specific Aim 1, we will test if GM-CSF signaling axis contributes to macrophage activation and
neuroinflammation in SGs from CHF animals. Specific Aim 2, we will address if GM-CSF signaling pathway
contributes to CHF-increased cell excitability of CSP neurons, cardiac sympathetic overactivation, and
ventricular arrhythmogenesis. Specific Aim 3, we will determine if optogenetic silencing in ARGs can achieve
the antiarrhythmic effect of RDN by attenuating GM-CSF-induced macrophage activation and neuroinflammation
in SGs in CHF. These studies will open a new avenue in therapeutics against lethal ventricular arrhythmia and
provide a novel clinical intervention to reduce mortality and improve outcomes and quality of life in CHF patients.
项目摘要
室性心律失常是慢性心力衰竭(CHF)患者死亡的主要原因。虽然
肾去神经(RDN)治疗室性心律失常的潜力已被广泛报道,RDN-
诱发的不良并发症严重限制了其在临床上的应用。我们最近的研究表明,
星状神经节(SG)的扩张和神经炎症有助于CHF增加细胞兴奋性,
心脏交感神经节后(CSP)神经元,其随后促进心脏交感神经
过度激活和心室肌纤维化。粒细胞-巨噬细胞集落刺激因子
(GM-CSF)是巨噬细胞活化中的关键介质。我们的试验数据显示,RDN减弱了心脏
交感神经过度激活和室性心律失常,这是伴随着显着减少GM-
CHF大鼠SG中CSF水平和巨噬细胞活化。然而,目前尚不清楚抗肿瘤作用是否
通过减弱CHF中SGs中GM-CSF介导的炎症通路来实现RDN。后
发现RDN的抗肿瘤机制,该建议旨在开发一种新的临床干预措施
以达到RDN的治疗作用并避免其局限性。由于肾脏的交感神经支配
主要起源于主动脉肾神经节(ARG)的神经元,靶向ARG神经元可能是合乎逻辑的
实现RDN的抗肿瘤作用的治疗策略。考虑到光遗传学的优势,
包括通过光敏视蛋白、腺相关病毒-
将古紫质(ArchT,一种抑制性光敏感视蛋白)基因转染到CHF的ARG神经元中
大鼠ARG神经元中ArchT的神经元表达的特异性将通过将神经元特异性表达与ARG神经元中ArchT的神经元特异性表达相连接来实现。
ArchT基因启动子。ARG神经元中的持续光遗传学沉默将通过照射
在自由移动的动物中无线控制和供电的LED探头。我们假设光遗传学
ARG神经元的抑制将降低SGs中CHF升高的GM-CSF水平,其随后降低了
巨噬细胞活化和神经炎症,从而减弱CSP神经元兴奋性,心脏
交感神经过度激活和CHF中的心室肌生成。使用多方面的技术方法
从整体动物到细胞分子水平,我们将设计体内和体外研究来评估这些
问题.具体目标1,我们将测试GM-CSF信号传导轴是否有助于巨噬细胞活化,
来自CHF动物的SG中的神经炎症。具体目标2,我们将讨论GM-CSF信号通路是否
有助于CHF增加CSP神经元的细胞兴奋性,心脏交感神经过度激活,
心室肥大具体目标3,我们将确定ARG中的光遗传学沉默是否可以实现
RDN通过减轻GM-CSF诱导巨噬细胞活化和神经炎症的抗肿瘤作用
在瑞士法郎的SGs。这些研究将为治疗致命性室性心律失常开辟一条新的途径,
提供了一种新的临床干预措施,以降低CHF患者的死亡率并改善其结局和生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu-Long Li其他文献
Yu-Long Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu-Long Li', 18)}}的其他基金
Neuromuscular junction as a therapeutic target to improve post-traumatic outcomes
神经肌肉接头作为改善创伤后结果的治疗靶点
- 批准号:
10420384 - 财政年份:2022
- 资助金额:
$ 59.44万 - 项目类别:
Neuromuscular junction as a therapeutic target to improve post-traumatic outcomes
神经肌肉接头作为改善创伤后结果的治疗靶点
- 批准号:
10656439 - 财政年份:2022
- 资助金额:
$ 59.44万 - 项目类别:
Potential therapies to improve ventricular vagal function in type 2 diabetes
改善 2 型糖尿病心室迷走功能的潜在疗法
- 批准号:
10222766 - 财政年份:2018
- 资助金额:
$ 59.44万 - 项目类别:
Potential therapies to improve ventricular vagal function in type 2 diabetes
改善 2 型糖尿病心室迷走功能的潜在疗法
- 批准号:
9974572 - 财政年份:2018
- 资助金额:
$ 59.44万 - 项目类别:
Mechanisms of cardiac sympathetic hyperactivity in chronic heart failure
慢性心力衰竭心脏交感神经亢进的机制
- 批准号:
9364173 - 财政年份:2017
- 资助金额:
$ 59.44万 - 项目类别:
Mechanisms of cardiac sympathetic hyperactivity in chronic heart failure
慢性心力衰竭心脏交感神经亢进的机制
- 批准号:
10585029 - 财政年份:2017
- 资助金额:
$ 59.44万 - 项目类别:
Dysfunction of Baroreceptor Neurons in Heart Failure: Cellular and Molecular Mech
心力衰竭中压力感受器神经元的功能障碍:细胞和分子机制
- 批准号:
8495401 - 财政年份:2010
- 资助金额:
$ 59.44万 - 项目类别:
Dysfunction of Baroreceptor Neurons in Heart Failure: Cellular and Molecular Mech
心力衰竭中压力感受器神经元的功能障碍:细胞和分子机制
- 批准号:
8099063 - 财政年份:2010
- 资助金额:
$ 59.44万 - 项目类别:
Dysfunction of Baroreceptor Neurons in Heart Failure: Cellular and Molecular Mech
心力衰竭中压力感受器神经元的功能障碍:细胞和分子机制
- 批准号:
8289593 - 财政年份:2010
- 资助金额:
$ 59.44万 - 项目类别:
Dysfunction of Baroreceptor Neurons in Heart Failure: Cellular and Molecular Mech
心力衰竭中压力感受器神经元的功能障碍:细胞和分子机制
- 批准号:
7985627 - 财政年份:2010
- 资助金额:
$ 59.44万 - 项目类别:














{{item.name}}会员




