Generalized prediction errors in the human cerebellum
人类小脑的广义预测误差
基本信息
- 批准号:10715334
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimalsArchitectureAssociation LearningBehaviorBehavioralBrainBrain regionCerebellar DiseasesCerebellumClinicalCognitionComputational TechniqueComputer AnalysisComputer ModelsDevelopmentDiseaseDisparateEventFeedbackFunctional Magnetic Resonance ImagingHealthHeterogeneityHumanIndividualInvestigationKnowledgeLanguageLearningLinkMeasuresModelingMotorMovementNeuronsOutcomePathologyPositioning AttributeProcessPsychological reinforcementReflex actionResearchRestRewardsRoleSamplingSensoryShort-Term MemorySignal TransductionStimulusStructureTestingTimeVisualWorkcognitive controlcognitive taskdesignexperimental studyeyeblink conditioninginsightlearning networkmotor controlmotor learningmultimodalityneuroimagingnovelsensory inputsocial cognitionstatistical learningtheories
项目摘要
Project Summary
In addition to motor control and learning, the cerebellum is intimately linked to cognition. This project is
designed to closely examine the cerebellum's role in nonmotor domains, namely, reinforcement learning and
statistical learning. We hypothesize that the structure's core computations for sensorimotor learning can be
generalized to nonmotor contexts. It is critical to understand how the cerebellum contributes to nonmotor learning
– this knowledge will support the development of novel mechanistic and clinical insights into cerebellar function,
and human learning in general.
Foundational theoretical work has described how the cerebellum typifies an ideal substrate for supervised
motor learning. This theory made testable empirical predictions that have been borne out in experiments in
animals using tasks such as Pavlovian eyeblink conditioning and vestibular-ocular reflex adaptation, revealing
facts about cerebellar sensorimotor processes in exquisite detail. But what about a cerebellar role in other task
domains? Here we address this question. The proposed work integrates behavioral, neuroimaging, and
computational techniques to develop a new framework for generalized cerebellar learning computations.
The research plan centers on three Specific Aims. In Aim 1 we use computationally guided functional
neuroimaging (fMRI) to examine the role of the cerebellum in reinforcement learning. We test the idea that the
cerebellum processes reward predictions and prediction errors, the core computations of reinforcement learning.
We also posit a constraint on cerebellar learning computations, namely that the structure only contributes to
learning when the temporal interval between events is brief (i.e., subsecond). Aim 2 takes a similar approach to
the domain of visual statistical learning, examining sensory predictions and prediction errors in the cerebellum
and further testing the proposed timing constraint. In Aims 1-2 we also measure cerebro-cerebellar connectivity
to position the cerebellum within broader task-specific learning networks, and to ask if cerebro-cerebellar
connectivity covaries with behavior. In Aim 3 we examine causal contributions of the cerebellum to nonmotor
learning, testing a large sample of individuals with cerebellar pathology and contrasting their behavior with
matched controls. Computational analyses will be used to detect and characterize the hypothesized deficits. This
project proposes a new framework for understanding the contributions of the cerebellum to nonmotor learning
and will provide new insight into the broader role of the cerebellum in health and disease.
项目摘要
除了运动控制和学习,小脑与认知密切相关。这个项目是
旨在仔细研究小脑在非运动领域的作用,即强化学习和
统计学习我们假设,该结构的核心计算的感觉运动学习可以是
一般化到非运动情境。了解小脑如何促进非运动学习是至关重要的
- 这些知识将支持对小脑功能的新的机制和临床见解的发展,
和人类的学习。
基础理论工作已经描述了小脑是如何典型地成为监督的理想基底的。
运动学习这一理论提出了可检验的经验性预测,这些预测已在1995年的实验中得到证实。
动物使用任务,如巴甫洛夫眨眼条件反射和前庭眼反射适应,揭示
有关小脑感觉运动过程的精美细节的事实。但是小脑在其他任务中的作用呢
域中的任何一个?我们在这里解决这个问题。拟议的工作整合了行为,神经成像,
计算技术,以开发一个新的框架,广义小脑学习计算。
研究计划围绕三个具体目标。在目标1中,我们使用计算引导的泛函
神经影像学(fMRI)检查小脑在强化学习中的作用。我们检验了
小脑处理奖励预测和预测错误,这是强化学习的核心计算。
我们还讨论了小脑学习计算的限制,即结构只有助于
学习事件之间的时间间隔何时短暂(即,亚秒)。Aim 2采用类似的方法,
视觉统计学习领域,检查小脑中的感觉预测和预测错误
以及进一步测试所提出的定时约束。在目标1-2中,我们还测量了小脑-小脑连接
将小脑定位在更广泛的特定任务的学习网络中,并询问小脑是否
连接性与行为是协变的。在目标3中,我们研究了小脑对非运动神经元的因果作用。
学习,测试大样本的个人与小脑病理和对比他们的行为与
匹配的控制。将使用计算分析来检测和表征假设的缺陷。这
一个项目提出了一个新的框架来理解小脑对非运动学习的贡献
并将为小脑在健康和疾病中的更广泛作用提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel David McDougle其他文献
Samuel David McDougle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel David McDougle', 18)}}的其他基金
Modeling and mapping multiple computational processes in human reinforcement learning
人类强化学习中的多个计算过程的建模和映射
- 批准号:
9761233 - 财政年份:2019
- 资助金额:
$ 41.88万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 41.88万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)