Structure-based In silico Screen for Small Molecule Inhibitors of Ets-1 Activity
基于结构的 Ets-1 活性小分子抑制剂的计算机筛选
基本信息
- 批准号:7385576
- 负责人:
- 金额:$ 25.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-21 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAutoimmune DiseasesBiological AssayBiological ProcessBiologyBoxingCCAAT-Enhancer-Binding ProteinsCCL2 geneCellsChemicalsClassComplexComputer SimulationDNADNA SequenceDNA-Protein InteractionDataDevelopmentDifferentiation and GrowthDiseaseDockingElectrophoretic Mobility Shift AssayElementsEvaluationEventFamily memberFunctional disorderGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGoalsHistone DeacetylaseIn VitroInflammationInflammatoryInterleukin-1InvestigationJointsLabelLaboratoriesLeadLibrariesMalignant NeoplasmsMediatingMetalloproteasesMethyltransferaseMitolactolMolecularNF-kappa BNMR SpectroscopyNitric OxideNumbersNylonsPathologic ProcessesPathway interactionsPatientsProcessProstaglandinsProteinsProteomicsPublicationsRecombinantsResearch PersonnelRheumatoid ArthritisRoleScienceScreening procedureSignal PathwaySpecificityStructureSynovial MembraneTNF geneTherapeuticTherapeutic AgentsTherapeutic InterventionThinkingTissuesTransactivationTranscriptional ActivationTranscriptional RegulationTumor Necrosis Factor-alphaTumor Necrosis FactorsUp-RegulationValidationZinc Fingersarthritis therapyarthropathiesbasec-ets1 transcription factorchemokinechromatin immunoprecipitationcross reactivitycytokineexpression cloninghuman TNF proteinin vivoinhibitor/antagonistinnovationmannovelnovel strategiesnovel therapeuticspromoterrepositoryscaffoldskillssmall moleculetherapeutic proteintherapeutic targettranscription factorvirtual
项目摘要
DESCRIPTION (provided by applicant): Inflammatory processes contribute to the pathological events that lead to tissue destruction in autoimmune diseases including rheumatoid arthritis (RA). For patients suffering with RA the development of therapeutic agents that are capable of blocking TNF1 and IL-1 have been important therapeutic milestones, however a significant number of patients fail to respond to these therapies possibly due to their inherent inability to inhibit other pathways requisite in this complex disease. Several laboratories have suggested that in order to further understand the pathophysiologies of RA new therapeutic targets need to be identified, targeted and validated. One potential class of targets is the cytokine-induced transcription factors; NF-k B, AP-1, C/EBP, and ETS-1 all of which have been detected in RA synovium. Several recent publications support the importance of targeting transcription factors (TFs), which would provide a mechanism of re-regulating gene expression pathways including the cytokine pathway through a controlled, rheostat "switch" rather than a binary on/off mechanism. In addition, a wealth of information and a better understanding of transcriptional biology and gene regulation supports that TFs themselves are potential targets for therapeutic intervention. The proposed project is highly innovative, partnering our translational discovery-based science with in vitro and in vivo validation of this novel target space, the TF-DNA interface for use in the development of first in man type RA therapy. This collaborative and truly synergistic application involving investigators with complementary skills partners the strengths of in silico structure-based small molecule discovery with NMR spectroscopy based target validation and in vitro characterization/evaluation in support of our approach for identifying and developing novel small molecules that specifically target and inhibit the interaction interface between Ets-1 and its sequence specific DNA promoter element. These investigators have unique strengths and expertise, which when partnered provides a significant opportunity for creative, "out of the box" thought and execution as demonstrated by the significant preliminary data in support of this application. Small molecules with demonstrable activity such as those identified represent an attractive opportunity for TF-dependent transcriptional regulation, providing an innovative strategy for the "hit-through-lead" development of therapeutic agents that selectively inhibit ETS TF activity at the TF-DNA level. This application is focused on selectively targeting this TF-DNA interface, which represents a novel approach for TF-dependent transcriptional regulation of Ets-1 and provides a unique opportunity for the development of therapeutic agents selectively targeting this transcription factor. Small molecule inhibition of the TF-DNA interaction interface provides a promising paradigm shift in transcriptional therapy for RA through pathway specific transcriptional regulation as has been attempted for nuclear factor kappa B (NF-kB).Through a wealth of information and a better understanding of transcriptional biology and gene regulation, TFs including NF-kB, HIF112 and others have emerged as novel targets for therapeutic intervention. The proposed project is highly innovative, partnering our translational discovery-based science with in vitro and in vivo validation of novel target space; the TF-DNA interface for use in the identification and subsequent development of novel therapies for RA. TFs are established regulators of gene expression and as such are requisite for a variety of biological processes, including growth, differentiation and development as well as pathological processes such as cancer and/or inflammation. Sequence-specific TF-DNA interactions are spatially and temporally regulated, resulting in refined specificity and selectivity at the protein-DNA interface. The ability to selectively target and inhibit the interaction interface of the TF-DNA complex represents a novel, highly specific strategy for reprogramming specific gene pathways that are deregulated in RA and cancer. Unlike other approaches including; polyamides, artificial transcription factors, zinc finger protein therapeutics we have proposed to partner in silico, virtual screening or high throughput docking (HTD) to screen large publicly accessible chemical repositories for small molecules that selectively target and thus inhibit this well-defined molecular interface. Importantly, in silico HTD is ideally suited for the exploration of novel target space such as the Ets-1 TF-DNA interaction interface. Our central hypothesis is that small molecules that target and disrupt this interface would be capable of regulating aberrant gene transcription and would thus offer a novel paradigm of therapy for RA. Those small molecule scaffolds that demonstrate significant in vivo activity would provide a transcriptional therapy platform for RA. This approach, if successful, represents an innovative and very unique opportunity to develop a "first in man" therapeutic approach that will selectively target and disrupt downstream TF-mediated gene expression by targeting the selectivity/specificity interface of the TF.
描述(由申请方提供):炎症过程有助于导致自身免疫性疾病(包括类风湿性关节炎(RA))组织破坏的病理事件。对于患有RA的患者,能够阻断TNF 1和IL-1的治疗剂的开发已经成为重要的治疗里程碑,然而,大量患者可能由于其固有的不能抑制这种复杂疾病中所需的其他途径而对这些疗法没有反应。一些实验室已经建议,为了进一步了解RA的病理生理学,需要识别、靶向和验证新的治疗靶点。一种潜在的靶点类型是尼古丁诱导的转录因子; NF-κ B、AP-1、C/EBP和ETS-1,所有这些都已在RA滑膜中检测到。几个最近的出版物支持靶向转录因子(TF)的重要性,其将提供通过受控的变阻器“开关”而不是二元开/关机制重新调节基因表达途径(包括细胞因子途径)的机制。此外,大量的信息和对转录生物学和基因调控的更好理解支持TF本身是治疗干预的潜在靶点。拟议的项目是高度创新的,将我们基于翻译发现的科学与这种新型靶向空间的体外和体内验证合作,TF-DNA界面用于开发第一种人类RA治疗。这种协作和真正的协同应用涉及具有互补技能的研究人员,将基于计算机结构的小分子发现与基于NMR光谱的靶点验证和体外表征/评价的优势结合起来,以支持我们鉴定和开发特异性靶向和抑制Ets-1及其序列特异性DNA启动子元件之间相互作用界面的新型小分子的方法。这些研究人员具有独特的优势和专业知识,当他们合作时,为创造性、“开箱即用”的思维和执行提供了重要的机会,正如支持本申请的重要初步数据所证明的那样。具有可证实活性的小分子,如鉴定的那些,代表TF依赖性转录调控的有吸引力的机会,为在TF-DNA水平选择性抑制ETS TF活性的治疗剂的“穿透引导”开发提供了创新策略。该申请集中于选择性地靶向该TF-DNA界面,其代表了用于Ets-1的TF依赖性转录调控的新方法,并为选择性地靶向该转录因子的治疗剂的开发提供了独特的机会。小分子抑制TF-DNA相互作用界面为RA的转录治疗提供了一个有希望的范式转变,通过途径特异性转录调控核因子κ B(NF-kB)。通过大量的信息和对转录生物学和基因调控的更好理解,包括NF-kB,HIF 112和其他TF已成为治疗干预的新靶点。拟议的项目具有高度创新性,将我们基于翻译发现的科学与新型靶向空间的体外和体内验证合作; TF-DNA界面用于RA新型疗法的鉴定和后续开发。TF是基因表达的既定调节剂,因此是多种生物过程所必需的,包括生长、分化和发育以及病理过程如癌症和/或炎症。序列特异性TF-DNA相互作用在空间和时间上受到调节,从而在蛋白质-DNA界面处产生精细的特异性和选择性。选择性靶向和抑制TF-DNA复合物的相互作用界面的能力代表了一种新的、高度特异性的策略,用于重新编程在RA和癌症中失调的特定基因通路。与其他方法不同,包括:聚酰胺、人工转录因子、锌指蛋白治疗剂,我们已经提出在计算机上进行合作,虚拟筛选或高通量对接(HTD),以筛选大型公共可访问的化学库,用于选择性靶向并因此抑制这种明确定义的分子界面的小分子。重要的是,计算机模拟HTD非常适合探索新的靶空间,如Ets-1 TF-DNA相互作用界面。我们的中心假设是,靶向和破坏这种界面的小分子能够调节异常基因转录,从而为RA提供一种新的治疗模式。这些在体内表现出显著活性的小分子支架将为RA提供转录治疗平台。这种方法,如果成功的话,代表了一个创新的和非常独特的机会,以开发一个“第一次在人”的治疗方法,将选择性地靶向和破坏下游TF介导的基因表达,通过靶向TF的选择性/特异性界面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALAN C RIGBY其他文献
ALAN C RIGBY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALAN C RIGBY', 18)}}的其他基金
Structure-based In silico Screen for Small Molecule Inhibitors of Ets-1 Activity
基于结构的 Ets-1 活性小分子抑制剂的计算机筛选
- 批准号:
7499088 - 财政年份:2007
- 资助金额:
$ 25.28万 - 项目类别:
Structure/Function Study of the Anticoagulant Protein S
抗凝蛋白S的结构/功能研究
- 批准号:
6475226 - 财政年份:2002
- 资助金额:
$ 25.28万 - 项目类别:
Structure/Function Study of the Anticoagulant Protein S
抗凝蛋白S的结构/功能研究
- 批准号:
6872198 - 财政年份:2002
- 资助金额:
$ 25.28万 - 项目类别:
Structure/Function Study of the Anticoagulant Protein S
抗凝蛋白S的结构/功能研究
- 批准号:
6624460 - 财政年份:2002
- 资助金额:
$ 25.28万 - 项目类别:
Structure/Function Study of the Anticoagulant Protein S
抗凝蛋白S的结构/功能研究
- 批准号:
6723696 - 财政年份:2002
- 资助金额:
$ 25.28万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 25.28万 - 项目类别:
Continuing Grant