Molecular Genetics and Gene Expression in Psychiatric Disorders
精神疾病的分子遗传学和基因表达
基本信息
- 批准号:7256821
- 负责人:
- 金额:$ 17.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-10 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAutopsyBehaviorBiotinBipolar DisorderBrainBrain regionCellsCerebrospinal FluidChronic DiseaseComplexDataDevelopmentDiseaseDisruptionEnvironmental Risk FactorFunctional disorderGene ExpressionGene Expression ProfilingGenesGeneticGenetic PolymorphismGenetic VariationGenomicsGenotypeHaplotypesHarvestHippocampus (Brain)HomeostasisHumanInvestigationLabelLeadLifeMajor Depressive DisorderMedicalMental DepressionMental disordersMentally Ill PersonsMinisatellite RepeatsModelingMolecular GeneticsMolecular ProfilingNucleic Acid Regulatory SequencesOligonucleotide MicroarraysParahippocampal GyrusPathway AnalysisPatientsPatternPhenotypePolymerase Chain ReactionPopulationProductivityPublic HealthRNARegulator GenesRegulatory ElementResearchResearch InstituteResearch PersonnelResourcesReverse Transcriptase Polymerase Chain ReactionRiskRoleSchizophreniaSerotoninStagingSystemTestingTimeTreatment CostUniversitiesWashingtonbrain tissueburden of illnessdentate gyrusdisorder riskenvironmental stressorgene environment interactiongene interactiongenetic associationgenetic risk factorgranule celllaser capture microdissectionmemberneuropathologynovelserotonin transporter
项目摘要
DESCRIPTION (provided by applicant): Major psychiatric illnesses such as schizophrenia, bipolar disorder and depression are complex diseases caused by the interaction of genetic and environmental factors. These influences intersect at the level of gene expression and create complex phenotypes that are the result of collective influences by groups of genes acting in concert across different brain regions. This study will investigate the dentate gyrus (DG) of the hippocampus and use large-scale gene expression profiling to model the regulatory relationships between genes in nearly homogeneous populations of DG granule cells. We hypothesize that disruption in the serotonin system by genetic polymorphisms of the serotonin transporter (SERT) gene results in alterations in gene expression in the dentate gyrus (DG) of the hippocampus which contribute to psychiatric disorders. We will compare gene regulatory networks in the DG in postmortem brain tissue from healthy and mentally ill subjects, and in mentally healthy carriers of different SERT haplotypes. This will allow us to test the hypothesis that certain SERT polymorphisms can raise the risk for mental illness by interfering with local patterns of gene expression. Homogeneous cell populations of dentate gyrus granule cells from mid-hippocampus will be harvested using laser capture microdissection, aRNA amplification, and hybridization to Affymetrix oligonucleotide microarrays. Gene expression profiles will be used to create models of gene regulatory networks in the DG. These models will allow us to make predictions about key regulatory elements in the DG gene network, and these predictions will be tested by quantitative RT-PCR. Relevance of this research to public health: Major psychiatric illnesses are chronic diseases that carry a very heavy disease burden both in terms of human suffering and as financial losses due to treatment costs and lost productivity. Previous genetic association studies have shown that allelic variants of SERT can influence disease risk in combination with environmental factors. In this study we will compare gene expression between groups of subjects with major psychiatric illnesses and normal controls, model the interaction of genes in a gene regulatory network, and identify key regulatory elements where genetic and environmental influences can intersect. This will increase our understanding of genetic risk factors for mental illness, gene-environment interactions, and highlight possible new treatment strategies.
描述(申请人提供):精神分裂症、躁郁症、抑郁症等主要精神疾病是遗传因素和环境因素相互作用引起的复杂疾病。 这些影响在基因表达水平上交叉,并产生复杂的表型,这是不同大脑区域协同作用的基因组集体影响的结果。 本研究将研究海马齿状回 (DG),并使用大规模基因表达谱来模拟几乎同质的 DG 颗粒细胞群体中基因之间的调控关系。 我们假设血清素转运蛋白(SERT)基因的遗传多态性对血清素系统的破坏导致海马齿状回(DG)基因表达的改变,从而导致精神疾病。 我们将比较健康和精神病受试者死后脑组织以及不同 SERT 单倍型的精神健康携带者 DG 中的基因调控网络。 这将使我们能够检验以下假设:某些 SERT 多态性可以通过干扰基因表达的局部模式来增加患精神疾病的风险。 将使用激光捕获显微切割、aRNA 扩增以及与 Affymetrix 寡核苷酸微阵列杂交来收获来自海马中部的齿状回颗粒细胞的同质细胞群。 基因表达谱将用于在 DG 中创建基因调控网络模型。 这些模型将使我们能够对 DG 基因网络中的关键调控元件进行预测,并且这些预测将通过定量 RT-PCR 进行测试。 这项研究与公共卫生的相关性:主要精神疾病是慢性疾病,在人类痛苦方面以及由于治疗费用和生产力损失造成的经济损失方面都带来非常沉重的疾病负担。 先前的遗传关联研究表明,SERT 的等位基因变异可以与环境因素结合影响疾病风险。 在这项研究中,我们将比较患有主要精神疾病的受试者组和正常对照组之间的基因表达,模拟基因调控网络中基因的相互作用,并确定遗传和环境影响可能交叉的关键调控元件。 这将增加我们对精神疾病遗传风险因素、基因与环境相互作用的理解,并强调可能的新治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUTH KOHEN其他文献
RUTH KOHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUTH KOHEN', 18)}}的其他基金
Molecular Genetics and Gene Expression in Psychiatric Disorders
精神疾病的分子遗传学和基因表达
- 批准号:
7793384 - 财政年份:2007
- 资助金额:
$ 17.38万 - 项目类别:
Molecular Genetics and Gene Expression in Psychiatric Disorders
精神疾病的分子遗传学和基因表达
- 批准号:
7421052 - 财政年份:2007
- 资助金额:
$ 17.38万 - 项目类别:
Molecular Genetics and Gene Expression in Psychiatric Disorders
精神疾病的分子遗传学和基因表达
- 批准号:
7603096 - 财政年份:2007
- 资助金额:
$ 17.38万 - 项目类别:
Molecular Genetics and Gene Expression in Psychiatric Disorders
精神疾病的分子遗传学和基因表达
- 批准号:
8051527 - 财政年份:2007
- 资助金额:
$ 17.38万 - 项目类别:
Stress Resilience in an Animal Model of Depression
抑郁症动物模型的压力恢复能力
- 批准号:
6596494 - 财政年份:2003
- 资助金额:
$ 17.38万 - 项目类别:
Stress Resilience in an Animal Model of Depression
抑郁症动物模型的压力恢复能力
- 批准号:
6706280 - 财政年份:2003
- 资助金额:
$ 17.38万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists