Neuronal mechanisms of model-based learning
基于模型的学习的神经机制
基本信息
- 批准号:10722261
- 负责人:
- 金额:$ 57.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-08 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAnxietyAreaBehavioralBrainCellsCodeCognitiveCommunicationComplexCompulsive BehaviorComputer ModelsDecision MakingDevicesDiseaseElectric StimulationEndowmentEnvironmentFunctional disorderFutureGoalsGrantGraphHippocampusImpairmentLearningLocationMajor Depressive DisorderMapsMental DepressionModelingMonkeysNeuronsPathway interactionsPatientsPharmaceutical PreparationsPlayPost-Traumatic Stress DisordersPredictive ValuePrevalenceProbabilityProcessPropertyPsychiatryResearchRewardsRoleSchizophreniaSeveritiesSpecific qualifier valueSymptomsTestingTherapeuticTherapeutic InterventionTheta RhythmUpdateawakeenvironmental changefallsflexibilityfrontal lobeknowledge graphlearning algorithmmaladaptive behaviormicrostimulationneuralneural circuitneuromechanismneurophysiologyneuropsychiatric disordernovelresponsespatiotemporal
项目摘要
The field of computational psychiatry seeks to understand the symptoms and causes of neuropsychiatric
diseases as dysfunctional learning processes. The learning algorithms used by the brain fall along a continuum
between two extremes. At one end of the continuum is model-free learning, an automatic process that relies on
trial-and-error, storing the values of past actions, and inflexibly repeating those actions that led to higher
values. On the other end is model-based learning, which generates predictions via a computationally
expensive, deliberative process that models the environment, which endows flexibility to respond to
environmental changes. Dysfunction of these algorithms can produce maladaptive behaviors. For example,
compulsive behavior is argued to arise from disruption of model-based learning, which biases patients towards
more inflexible model-free learning mechanisms. Although a great deal of progress has been made in
understanding the neural mechanisms underlying model-free learning, we have limited understanding of how
the brain uses models to generate reward predictions.
The grant aims to test the hypothesis that interactions between hippocampus (HPC) and orbitofrontal cortex
(OFC) implement model-based learning. Specifically, we predict that HPC is responsible for constructing a
cognitive map that instantiates a neural representation of behavioral tasks, and OFC is responsible for using
the cognitive map to generate reward predictions that can be used to generate flexible decision-making. The
current grant will test key predictions of this hypothesis. Our first aim uses a novel task that temporally
separates the presentation of information about states and values. We will use high-channel count recordings
from HPC and OFC and closed-loop microstimulation to examine how the putative HPC state representation
affects the coding of value in OFC. In addition, we will examine whether this interaction occurs through the
synchronization of the theta rhythm between the two areas. In the second aim, we will examine how a more
complex map involving multiple distinct states might be used to enable rapid readjustments to reward changes.
Dysfunction of pathways between HPC and frontal cortex are implicated in several neuropsychiatric disorders,
including schizophrenia, major depression, and post-traumatic stress disorder. Medication-based treatments
have failed to show significant reduction in the prevalence or severity of these disorders. An alternative
approach is to use electrical stimulation, but to date this has also yielded mixed results. Our goal is to develop
more sophisticated devices that will interact with neural circuits in a more principled way to treat
neuropsychiatric disorders, such as using neural activity to detect symptoms and microstimulation to intervene.
An impediment to this approach is that the neural coding in many of these circuits remains poorly understood.
The aim of the current grant is to understand the neuronal properties of HPC and OFC to help lay the
groundwork for future potential therapeutic approaches based on closed-loop microstimulation.
计算精神病学领域寻求理解神经精神病的症状和原因
疾病是功能失调的学习过程。大脑使用的学习算法沿着一个连续体
两个极端之间。在连续体的一端是无模型学习,这是一个依赖于
反复试验,存储过去行为的值,并重复那些导致更高收益的行为。
价值观另一端是基于模型的学习,它通过计算生成预测。
昂贵的,深思熟虑的过程,模拟环境,这赋予灵活性,以回应
环境变化。这些算法的功能障碍会产生适应不良的行为。比如说,
强迫行为被认为是由于基于模型的学习中断引起的,这使患者倾向于
更不灵活的无模型学习机制。虽然在这方面取得了很大的进展,
了解无模型学习背后的神经机制,我们对如何理解有限
大脑使用模型来产生奖励预测。
该基金旨在验证海马体(HPC)和眶额皮质之间的相互作用
(OFC)实施基于模型的学习。具体来说,我们预测HPC负责构建一个
认知地图,实例化行为任务的神经表示,OFC负责使用
认知地图生成奖励预测,可用于生成灵活的决策。的
目前的赠款将测试这一假设的关键预测。我们的第一个目标使用了一个新的任务,
将有关状态和值的信息的表示分开。我们将使用高通道计数记录
从HPC和OFC和闭环微刺激来检查假定的HPC状态表示如何
影响OFC中的值编码。此外,我们将研究这种相互作用是否通过
两个区域之间θ节律的同步。在第二个目标中,我们将研究如何更好地
可以使用涉及多个不同状态的复杂映射来实现对奖励变化的快速重新调整。
HPC和额叶皮质之间的通路功能障碍与几种神经精神疾病有关,
包括精神分裂症、重度抑郁症和创伤后应激障碍。药物治疗
未能显示这些疾病的患病率或严重程度的显著降低。一个替代
一种方法是使用电刺激,但迄今为止,这也产生了混合的结果。我们的目标是开发
更复杂的设备将以更有原则的方式与神经回路相互作用,
神经精神疾病,如使用神经活动来检测症状和微刺激进行干预。
这种方法的一个障碍是,这些回路中的许多神经编码仍然知之甚少。
目前拨款的目的是了解HPC和OFC的神经元特性,以帮助奠定基础。
为基于闭环微刺激的未来潜在治疗方法奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joni D Wallis其他文献
Joni D Wallis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joni D Wallis', 18)}}的其他基金
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10297842 - 财政年份:2019
- 资助金额:
$ 57.79万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10380534 - 财政年份:2019
- 资助金额:
$ 57.79万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10064645 - 财政年份:2019
- 资助金额:
$ 57.79万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10516049 - 财政年份:2019
- 资助金额:
$ 57.79万 - 项目类别:
Hippocampal-orbitofrontal interactions and reward learning
海马-眶额相互作用和奖励学习
- 批准号:
10724154 - 财政年份:2019
- 资助金额:
$ 57.79万 - 项目类别:
Frontostriatal Rhythms Underlying Reinforcement Learning.
强化学习背后的额纹状体节律。
- 批准号:
10401263 - 财政年份:2018
- 资助金额:
$ 57.79万 - 项目类别:
The Unlearning of Stimulus-Outcome Associations through Intracortical Microstimulation
通过皮质内微刺激忘记刺激-结果关联
- 批准号:
9262185 - 财政年份:2016
- 资助金额:
$ 57.79万 - 项目类别:
The role of dopamine in anterior cingulate prediction errors
多巴胺在前扣带回预测误差中的作用
- 批准号:
8638633 - 财政年份:2014
- 资助金额:
$ 57.79万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 57.79万 - 项目类别:
Research Grant