Investigating Disparities in Home Health Access and Quality for Medicare Beneficiaries with Alzheimer's Disease and Related Dementias Following Recent Payment System Revisions
调查最近支付系统修订后患有阿尔茨海默病和相关痴呆症的医疗保险受益人在家庭健康获取和质量方面的差异
基本信息
- 批准号:10724842
- 负责人:
- 金额:$ 33.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmsAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAmericanCOVID-19CaringCharacteristicsClinicalCommunitiesCommunity HealthcareCommunity PhysicianCommunity SurveysDataData SetDiagnosisDiseaseDisparityElderlyEmergency department visitEnrollmentEnsureFee-for-Service PlansFutureGeographyGoalsGroupingHealthHomeHome Care ServicesHome Health AgencyHospitalizationImpaired cognitionIndividualInpatientsInstitutionLength of StayLinear ModelsLinkLogisticsMeasuresMedicaidMedicareMedicare claimModelingMonitorNursesOutcomeOutcome MeasurePatient CarePatient-Focused OutcomesPatientsPersonsPhysiciansPolicy MakingRaceRehabilitation therapyReportingResearchResearch PersonnelRisk AdjustmentSamplingService delivery modelServicesSeveritiesShockSocial AdjustmentSourceSubgroupSystemTestingUnited States Centers for Medicare and Medicaid ServicesVisitVisiting NurseWorkaging in placebeneficiarycare deliverycareercommunity based servicecommunity livingcomorbiditycopaymentcoronavirus diseasecostexperiencefinancial incentivehealth assessmenthealth care deliveryhealth disparityhigh riskhuman old age (65+)membernegative affectnursing skillpaymentpost implementationpre-pandemicresidenceskillstrend
项目摘要
PROJECT SUMMARY
Of 5.4 million persons with Alzheimer's Disease and Related Dementias (ADRD) in the US, 70% live
in the community and are at high risk for unmet care needs. Medicare home health (HH) is a crucial source of
care for community-living older adults with ADRD, delivering skilled nursing, therapy, and aide services in the
patient's home. Patients can enter HH following an inpatient stay (post-acute HH) or referral by a community
physician (Community-Entry Home Health (CEHH)). Nearly half (44%) of Medicare HH episodes are CEHH.
Those with ADRD are especially likely to access CEHH. Prior research shows that 30% of CEHH patients have
ADRD, compared to just 12% of post-acute HH patients.
Recent changes to Medicare HH reimbursement under the Patient-Driven Groupings Model (PDGM)
adjust payment by referral source; PDGM is projected to reduce average reimbursement for CEHH by 11% while
increasing average reimbursement for post-acute HH by 29% (holding other patient characteristics constant)
and does not adjust for patient ADRD status. These changes have prompted concerns that PDGM will negatively
impact CEHH patients, especially those with ADRD. The only existing analysis of PDGM's effects on HH
utilization fails to examine differences by referral source (community vs post-acute), investigate impacts among
vulnerable beneficiary subpopulations, such as those with ADRD, or study changes in patient outcomes.
The goal of the proposed research is to assess PDGM's impact on CEHH access, care delivery, and
outcomes for community-living older adults with ADRD. We will link Medicare claims, HH assessment, and HH
agency data, along with geographic data from the American Community Survey, for a 100% sample of Medicare
beneficiaries from 2019-2021. Specific aims are: (1) Characterize PDGM's impact on CEHH access for
community-living Medicare beneficiaries with ADRD, (2) Determine PDGM's impact on CEHH care delivery (e.g.,
number and type of visits) for patients with ADRD, (3) Assess PDGM's association with CEHH outcomes (e.g.,
hospitalization, Emergency Department visits) for patients with ADRD. In all aims, we will adjust for social and
clinical characteristics of the older adult, as well as characteristics of their zip code and state of residence, and
the HH agency providing care. PDGM was implemented in 2020, but due to service disruptions related to COVID-
19, we consider 2019 as the “pre” period and 2021 as the “post” period (available evidence shows patient volume
and average comorbidity scores stabilized by 2021, reflecting 2019 levels).
This research is needed to assess whether a new payment system (PDGM) has contributed to disparities
in HH access and quality for those with ADRD. Findings will provide the first evidence regarding PDGM's impacts
on CEHH care for those with ADRD and could inform payment system revisions aimed at ensuring accessible,
high-quality home-based care for this high-need subpopulation. This work is especially timely given the upward
trend in HH utilization and growing numbers of community-living individuals with ADRD.
项目摘要
在美国540万阿尔茨海默病和相关痴呆症(ADRD)患者中,70%的人生活在
在社区中,高风险的未满足的护理需求。医疗保险家庭健康(HH)是一个重要的来源,
照顾社区生活的老年人与ADRD,提供熟练的护理,治疗,并在
病人的家。患者可以在住院(急性HH后)或社区转诊后进入HH
社区进入家庭健康(CEHH)。近一半(44%)的Medicare HH发作是CEHH。
ADRD患者特别有可能访问CEHH。先前的研究表明,30%的CEHH患者
ADRD,而急性后HH患者仅为12%。
根据患者驱动分组模式(PDGM),Medicare HH报销的最新变化
根据转诊来源调整付款; PDGM预计将CEHH的平均报销减少11%,
将急性HH后的平均报销增加29%(保持其他患者特征不变)
并且不针对患者ADRD状态进行调整。这些变化引发了人们的担忧,即PDGM将产生负面影响。
影响CEHH患者,尤其是ADRD患者。PDGM对HH影响的唯一现有分析
利用率未能检查转诊来源的差异(社区与急性后),调查
弱势受益亚群,如ADRD患者,或患者结局的研究变化。
拟议研究的目标是评估PDGM对CEHH访问,护理提供和
社区生活的ADRD老年人的结果。我们将链接Medicare索赔、HH评估和HH
沿着来自美国社区调查的地理数据,针对100%的Medicare样本
2019-2021年的受益人。具体目标是:(1)说明PDGM对CEHH准入的影响,
患有ADRD的社区生活医疗保险受益人,(2)确定PDGM对CEHH护理提供的影响(例如,
就诊次数和类型),(3)评估PDGM与CEHH结果的相关性(例如,
住院、急诊就诊)。在所有目标中,我们将根据社会和
老年人的临床特征,以及他们的邮政编码和居住州的特征,以及
提供护理的HH机构。PDGM于2020年实施,但由于与COVID-19相关的服务中断,
19,我们认为2019年为“前期”,2021年为“后期”(现有证据显示患者数量
到2021年,科摩罗的平均得分稳定下来,反映2019年的水平)。
这项研究是必要的,以评估是否一个新的支付系统(PDGM),促成了差距
在HH的访问和质量与ADRD。调查结果将提供有关PDGM影响的第一个证据
关于CEHH对ADRD患者的护理,并可以为旨在确保无障碍的支付系统修订提供信息,
为这一高需求亚群提供高质量的家庭护理。这项工作是特别及时鉴于向上
HH使用的趋势和社区生活的ADRD患者数量的增加。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Burgdorf其他文献
Julia Burgdorf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Burgdorf', 18)}}的其他基金
Effects of Family Caregiver Availability and Capacity on Home Health Care for Older Adults with Alzheimer's Disease and Related Dementias
家庭护理人员的可用性和能力对患有阿尔茨海默病和相关痴呆症的老年人的家庭保健的影响
- 批准号:
10571079 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
Supporting Dementia Caregivers During Medicare Home Health: Developing the DECLARE Needs Assessment Intervention
在 Medicare 家庭健康期间支持痴呆症护理人员:制定 DECLARE 需求评估干预措施
- 批准号:
10643284 - 财政年份:2023
- 资助金额:
$ 33.48万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.48万 - 项目类别:
Research Grant














{{item.name}}会员




