Electrocardiogram-based deep learning and decision analysis to improve atrial fibrillation risk estimation
基于心电图的深度学习和决策分析改善房颤风险评估
基本信息
- 批准号:10722762
- 负责人:
- 金额:$ 19.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:Advisory CommitteesAffectAgeAlcoholsAnticoagulationArrhythmiaAtrial FibrillationBody Weight decreasedCalibrationCardiacCardiologyCardiomyopathiesCirculationClinicalClinical DataClinical ResearchClinical effectivenessComplexConflict (Psychology)CustomDataData ScienceData ScientistData SetDecision AnalysisDecision ModelingDevelopmentDiagnosisDiagnostic testsDiscriminationDiseaseEarly DiagnosisElectrocardiogramElectrophysiology (science)EuropeanExerciseFellowshipFutureGeneral HospitalsGoalsGuidelinesHealthHealthcareHeart failureImpaired cognitionIncidenceIndividualInterventionIntervention StudiesLeadLearningLearning SkillMachine LearningManuscriptsMass ScreeningMassachusettsMentored Patient-Oriented Research Career Development AwardMentorsMethodsModelingMonitorMorbidity - disease rateOralOutcomePatientsPeer ReviewPersonsPilot ProjectsPositioning AttributePreventive measurePrimary CareProgram DevelopmentPublic HealthPublishingResearch PersonnelResearch TrainingResidenciesRiskRisk EstimateRisk FactorsRisk ReductionSamplingScienceStrokeStroke preventionSurveysTestingTrainingUnited StatesWorkcardiovascular disorder riskcareercareer developmentclinical riskcomparative effectivenesscost effectivenessdeep learningdeep learning modeldesigndisorder riskexperiencehandheld mobile devicehealth care settingsheart rhythmimplementation scienceimprovedimproved outcomeinterestmachine learning modelmedical schoolsmodel buildingmodels and simulationmultidisciplinarynovelpopulation basedpredictive toolspreventive interventionprimary care patientprospectiverisk predictionrisk prediction modelscreeningsexsimulationskillstherapy designtooltrial comparingvirtual
项目摘要
Project Summary/Abstract
Atrial fibrillation (AF) is a major public health problem resulting in preventable strokes and increased incidence
of heart failure and early cognitive decline. AF is expected to affect nearly 12 million people in the United States
by 2030. Oral anticoagulation (OAC) is highly effective in reducing risk of AF-related stroke, and other preventive
interventions such as weight loss, exercise, and alcohol cessation may reduce risk of AF and associated
complications. However, AF is commonly asymptomatic and is frequently episodic, and therefore may be difficult
to diagnose. Although screening can detect undiagnosed AF, mass screening approaches have not resulted in
meaningful improvements in clinical outcomes. A major inefficiency inherent within current screening approaches
is the screening of many individuals at relatively low risk for AF, leading to an inefficient and low-yield screening
intervention. Therefore, there is a critical unmet need to identify individuals at elevated risk of developing AF
upfront, in order to optimize the efficiency of AF screening and preventive interventions. In Aim 1 of this proposal,
we will develop and compare novel deep learning-based methods to estimate AF risk in an automated fashion
using mobile single-lead electrocardiograms. In Aim 2, we will conduct an individual-level simulation to quantify
the comparative and cost-effectiveness of a risk-based approach to AF screening, as compared to the current
clinical standard of AF screening based on the simple age cutoff of ³65 years. In Aim 3, we will perform a pilot
study to quantify the user acceptability of prospective AF risk estimation and quantify associations between
estimated AF risk and true AF incidence at 18 months. The overall goal of this proposal is to establish the
feasibility and potential clinical value of automated AF risk estimation to guide preventive interventions designed
to reduce the morbidity resulting from AF and its associated complications. The aims will be executed in the
setting of a comprehensive career development program designed to provide Dr. Khurshid, an early career
investigator, with the skills and experience required to become an independent clinician investigator focused on
the improvement of outcomes in cardiac arrhythmias through the use of disease risk prediction. This proposal
impanels a multi-disciplinary team comprising experts in machine learning, decision science, and prospective
clinical studies, who will guide Dr. Khurshid in his transition to scientific independence.
项目总结/摘要
心房颤动(AF)是一个主要的公共卫生问题,导致可预防的中风和发病率增加
心力衰竭和早期认知能力下降。AF预计将影响美国近1200万人
到2030年口服抗凝剂(OAC)在降低AF相关卒中风险方面非常有效,
减肥、锻炼和戒酒等干预措施可能会降低房颤及相关疾病的风险。
并发症然而,房颤通常无症状,且经常是发作性的,因此可能很困难。
诊断。虽然筛查可以检测出未确诊的房颤,但大规模筛查方法并没有导致
临床结果有意义的改善。当前筛选方法中固有的主要低效率
对许多房颤风险相对较低的个体进行筛查,导致筛查效率低且产量低
干预因此,识别房颤风险升高的个体是一个关键的未满足需求
为了优化房颤筛查和预防干预的效率。在本提案的目标1中,
我们将开发和比较新的基于深度学习的方法,以自动化的方式估计AF风险
使用移动的单导联心电图。在目标2中,我们将进行个人层面的模拟,
与目前的AF筛查方法相比,基于风险的AF筛查方法的比较和成本效益
房颤筛查的临床标准基于简单的年龄截止值≥ 65岁。在目标3中,我们将执行一个试点
研究旨在量化前瞻性AF风险估计的用户可接受性,并量化
18个月时的估计AF风险和真实AF发生率。本提案的总体目标是建立
自动化AF风险估计的可行性和潜在临床价值,以指导设计的预防性干预措施
降低房颤及其相关并发症的发病率。这些目标将在
制定一个全面的职业发展计划,旨在为Khurshid博士提供早期的职业生涯,
研究者,具有成为独立临床研究者所需的技能和经验,
通过使用疾病风险预测改善心律失常的结局。这项建议
组建了一个由机器学习、决策科学和前瞻性科学专家组成的多学科团队,
他将指导Khurshid博士向科学独立过渡。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Keeping to the rhythm of cardiovascular health.
保持心血管健康的节奏。
- DOI:10.1093/eurjpc/zwad410
- 发表时间:2024
- 期刊:
- 影响因子:8.3
- 作者:Kany,Shinwan;Khurshid,Shaan
- 通讯作者:Khurshid,Shaan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaan Khurshid其他文献
Shaan Khurshid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 19.62万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 19.62万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 19.62万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 19.62万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 19.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 19.62万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 19.62万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 19.62万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 19.62万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 19.62万 - 项目类别:
Miscellaneous Programs