Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
基本信息
- 批准号:10722011
- 负责人:
- 金额:$ 12.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-11 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsAssessment toolBrainChildClinicalCohort StudiesCommunitiesComputer ModelsDataData CollectionDecision TreesDetectionDevelopmentDiagnosisDiagnosticDimensionsEarly InterventionEarly identificationEnvironmentEquityEvaluationFactor AnalysisFamilyFemaleFundingFutureGeneral PopulationGoalsHeterogeneityInfrastructureInterventionInterviewKnowledgeLifeLongevityMachine LearningMeasurementMeasuresMedicalMental disordersMentored Clinical Scientist Development ProgramMentorsMentorshipMethodologyMethodsMinnesotaModelingNational Institute of Mental HealthOutcomeParentsPerceptionPerformancePhasePositioning AttributePrimary CareProviderPsychologistQuality of lifeQuestionnairesRegistriesReportingResearchRiskSamplingScreening procedureSex DifferencesSigns and SymptomsSiteStrategic PlanningSubgroupSymptomsTestingToddlerTrainingTraining SupportUniversitiesVisitWaiting ListsWorkautism spectrum disorderautistic childrencareer developmentclinical translationclinically actionableclinically relevantcohortcommunity based participatory researchdisorder riskdissemination scienceearly childhoodearly screeninggender equitygradient boostingimplementation scienceimprovedinformation gatheringlensmalenovelpediatric departmentpediatricianprecision medicineprofessorrandom forestrecruitrepetitive behaviorscreeningservice interventionsexskillssocial communicationtraining opportunitytraittranslational research program
项目摘要
PROJECT SUMMARY/ABSTRACT
Screening tools for autism spectrum disorder (ASD) show poor predictive performance in practice, particularly
for females, which may arise due to sex-related measurement bias of screening questionnaires, and lack of
precision in capturing the variability in early symptom profiles of ASD. Computational approaches to
characterize heterogeneity and assess and account for sex-related measurement bias in early ASD symptoms
may identify ASD risk profiles that can be clinically actionable in practice. The candidate's long-term goals are
to enhance goals quality of life for children with ASD and their families by lowering the age of diagnosis,
especially in females missed by traditional screening methods. The research and training described in this K23
application will build on the candidate's existing expertise, adding conceptual and methodological skills needed
to develop and implement a novel screening approach that will more precisely identify ASD risk in a
community-based sample. Aim 1 evaluates the extent of sex-based measurement bias in measures shown to
capture clinically-relevant variability in early ASD traits in a sample of 3,000 children between 17-25 months
recruited from a community research registry. Aim 2 applies computational approaches to model dimensional
variability in early ASD symptoms and identify subgroups of risk in the same sample that are hypothesized to
vary on clinical outcomes at 36 months. Aim 3 takes a dissemination and implementation (D&I) science lens to
assess parent and provider views on screening practices to identify facilitators and barriers to change via
qualitative interviews (Pediatrician N=20; Parent N=40). This project is in line with NIMH Strategic Plan Goal 2
to “examining mental illness trajectories across the lifespan.” The candidate is a clinical psychologist and
Assistant Professor at the University of Minnesota, with expertise in characterizing sex differences in early
ASD trajectories. The proposed K23 application will provide the candidate with the training needed to develop
new knowledge and skills in conducting community-based screening for ASD, computational modeling of
heterogeneity, and dissemination and implementation science. Mentors Dr. Damien Fair, Jed Elison, and
Timothy Beebe possess the expertise and mentoring skills to support these training and scientific aims. This
will position the candidate to build an independent clinical-translational research program focused on improving
the precision of early screening for ASD to enable precision medicine for early ASD concerns that are
equitable by sex. Training will occur in an exceptional scientific environment in the Department of Pediatrics at
the University of Minnesota and the newly established Masonic Institute of the Developing Brain.
项目摘要/摘要
自闭症谱系障碍(ASD)的筛查工具在实践中表现出较差的预测性能,特别是
对于女性,这可能是由于筛选问卷的性别相关测量偏倚以及缺乏
准确捕捉ASD早期症状特征的变异性。计算方法
描述异质性并评估和解释早期ASD症状中的性别相关测量偏倚
可以识别ASD的风险概况,可以在临床实践中采取行动。候选人的长期目标是
通过降低诊断年龄来提高ASD儿童及其家庭的生活质量,
特别是在传统筛查方法遗漏的女性中。本K23中描述的研究和培训
申请将建立在候选人现有的专业知识,增加所需的概念和方法的技能
开发和实施一种新的筛查方法,可以更精确地识别ASD风险,
基于社区的样本目标1评估了基于性别的测量偏差的程度,
在17-25个月的3,000名儿童样本中捕获早期ASD特征的临床相关变异性
从社区研究登记处招募的目标2将计算方法应用于模型维
早期ASD症状的变异性,并在同一样本中识别假设为
在36个月时的临床结局不同。目标3采用传播和实施科学透镜,
评估家长和提供者对筛选实践的看法,以确定促进因素和障碍,
定性访谈(儿科医生N=20;父母N=40)。该项目符合NIMH战略计划目标2
到“检查一生中的精神疾病轨迹”候选人是临床心理学家,
明尼苏达大学助理教授,擅长描述早期
ASD轨迹。拟议的K23应用程序将为候选人提供开发所需的培训
进行基于社区的ASD筛查、ASD计算建模的新知识和技能
异质性、传播与实施科学。导师达米恩·费尔博士、杰德·埃利森和
蒂莫西·毕比(Timothy Beebe)拥有支持这些培训和科学目标的专业知识和指导技能。这
将定位候选人建立一个独立的临床转化研究计划,重点是改善
ASD早期筛查的精确性,以实现对早期ASD问题的精确医学,
性别平等。培训将在儿科的特殊科学环境中进行,
明尼苏达大学和新成立的共济会大脑发育研究所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Ann Burrows其他文献
Catherine Ann Burrows的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 12.67万 - 项目类别:
Research Grant