Adaptive glycolysis as a regulator of neuronal function and decline
适应性糖酵解作为神经元功能和衰退的调节剂
基本信息
- 批准号:10722822
- 负责人:
- 金额:$ 12.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAnimal BehaviorApoptosisAwardBehaviorBehavioralBiologyBiosensorBrainCaenorhabditis elegansCalciumCalcium SignalingCareer MobilityCategoriesCellsCharacteristicsChemotaxisChronicCollaborationsColonCommunicationComplementDataDefectDisease ProgressionEquilibriumExposure toFacultyFructoseFunctional disorderGeneticGlucoseGlycolysisGoalsHomeostasisHypoxiaImageImpairmentIn VitroIndividualIon ChannelLearningLinkLongevityMeasuresMediatingMentorshipMetabolicMetabolismMethodsMitochondriaModelingMolecularMonitorNADPNeuronal DysfunctionNeuronsNeurophysiology - biologic functionNeurosciencesOccupationsOpsinOrthologous GeneOxidation-ReductionPathway interactionsPentosephosphate PathwayPhaseProductionProteinsResearchResolutionRestSodium ChlorideSourceSpecific qualifier valueStimulusStressSystemTechniquesTimeTissuesTrainingUniversitiesVisualizationVisualization softwareWorkage relatedassay developmentblood glucose regulationcareercareer developmentcostexperiencefunctional declineglucose metabolismglucose uptakein vivoinsightnetwork dysfunctionneuralneuronal metabolismnovelpreventresponsesensorskillstool
项目摘要
A foundational, unanswered question of neural metabolism is whether the dramatic reduction in glucose uptake
observed during aging and Alzheimer's disease progression is a cause or consequence of the functional decline
of neurons. Current methods for visualizing the dynamics and effects of metabolism in vivo are too limited to
determine if this plays a role in eventual neuronal dysfunction. Notably, neurons are thought to primarily use
glucose for redox protection via the pentose phosphate pathway (PPP), rather than for production of ATP by
glycolysis, and when glycolysis is upregulated in neurons in vitro it leads to elevated redox damage and
apoptosis. As neuronal stimulation can also temporarily increase glycolytic flux, this suggests there may be an
uncharacterized competitive regulation of glucose use towards balancing either ATP production or redox
protection. Therefore, the goal of this proposal is to develop and utilize genetically-encoded biosensors for key
metabolites in C. elegans neurons to determine the relationship between elevated calcium activity, dynamic
states of glucose metabolism, and redox balance at single cell resolution. Thus, aim 1 of this proposal will utilize
the novel fluorescent sensor HYlight to dynamically measure changes in cellular glycolysis in vivo during
conditions of energy stress, such as with neuronal stimulation. The main goals of this aim are to (1) determine
the relationship between states of high ATP demand and induction of upregulated glycolysis, and (2) elucidate
the molecular mechanisms that enhance glycolysis under these conditions. Aim 2 will determine whether states
of high neuronal glycolysis also lead to increased redox sensitivity in single neurons. Genetically-encoded
biosensors for ROS and NADPH will be used to read out cellular redox state and enable development of an
assay for quantifying degradation in stimulation-induced calcium activity that results from cell-autonomous ROS
accumulation. Finally, the effects of reducing glucose within a single neuron over the lifespan of aging worms
will be compared in the context of calcium activity and behavior to determine whether these effects coincide with
those induced by elevated redox damage. This system described herein would provide a new avenue for
assessing the source and impact of ROS-induced decline and give significant insight into the importance of
balancing glucose metabolism in maintaining neuronal function and behavior during aging. Additionally, it will
provide important career development for the submitting candidate, who will train during the K99 phase under
the mentorship of Dr. Daniel Colón-Ramos at Yale University. This lab has significant expertise in behavioral
neuroscience, which will be critical for advancing the career goals of the candidate in linking single neuron biology
to behavioral changes during aging. This award will also support the candidate’s career goals by providing an
opportunity to learn critical research skills, mentorship expertise, and personalized guidance for navigating the
faculty job search. With this training the candidate will be able to successfully complete the proposed research
and transition to an independent faculty career.
神经代谢的一个基本的,未回答的问题是,葡萄糖摄取的急剧减少是否
在衰老和阿尔茨海默病进展过程中观察到的是功能下降的原因或后果
的神经元。目前用于可视化体内代谢的动力学和影响的方法太有限,
确定这是否在最终的神经元功能障碍中起作用。值得注意的是,神经元被认为主要使用
葡萄糖通过磷酸戊糖途径(PPP)进行氧化还原保护,而不是通过
糖酵解,并且当糖酵解在体外神经元中上调时,其导致氧化还原损伤升高,
凋亡由于神经元刺激也可以暂时增加糖酵解通量,这表明可能存在一种糖酵解途径。
葡萄糖使用的非特征性竞争性调节,以平衡ATP产生或氧化还原
保护因此,本提案的目标是开发和利用基因编码的生物传感器,
C.确定神经元钙离子活性升高之间的关系,动态
葡萄糖代谢状态和单细胞分辨率下的氧化还原平衡。因此,本提案的目标1将利用
新型荧光传感器HYlight用于动态测量体内细胞糖酵解的变化,
能量应激条件,例如神经元刺激。这一目标的主要目标是:(1)确定
高ATP需求状态与糖酵解上调诱导之间的关系,以及(2)阐明
在这些条件下增强糖酵解的分子机制。目标2将决定各国是否
高神经元糖酵解也导致单个神经元氧化还原敏感性增加。遗传编码
ROS和NADPH的生物传感器将用于读出细胞的氧化还原状态,并能够开发一种
用于定量由细胞自主ROS引起的刺激诱导的钙活性的降解的测定
积累最后,在老化蠕虫的寿命中,减少单个神经元内的葡萄糖的影响
将在钙活动和行为的背景下进行比较,以确定这些影响是否与
这些是由氧化还原损伤引起的。本文所述的该系统将提供一种新的途径,
评估ROS引起的下降的来源和影响,并对以下方面的重要性给予重要的见解:
平衡葡萄糖代谢以维持衰老期间的神经元功能和行为。此外,它将
为提交申请的候选人提供重要的职业发展,他们将在K99阶段接受培训,
耶鲁大学的丹尼尔·科隆-拉莫斯博士的指导这个实验室在行为学方面
神经科学,这将是至关重要的推进候选人在连接单神经元生物学的职业目标
与衰老过程中的行为变化有关。该奖项还将支持候选人的职业目标,
有机会学习关键的研究技能,指导专业知识和个性化的指导,
教师求职通过这种培训,候选人将能够成功完成拟议的研究
并过渡到独立的教师生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Wolfe其他文献
Aaron Wolfe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




