Adaptive glycolysis as a regulator of neuronal function and decline
适应性糖酵解作为神经元功能和衰退的调节剂
基本信息
- 批准号:10722822
- 负责人:
- 金额:$ 12.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgingAlzheimer&aposs DiseaseAnimal BehaviorApoptosisAwardBehaviorBehavioralBiologyBiosensorBrainCaenorhabditis elegansCalciumCalcium SignalingCareer MobilityCategoriesCellsCharacteristicsChemotaxisChronicCollaborationsColonCommunicationComplementDataDefectDisease ProgressionEquilibriumExposure toFacultyFructoseFunctional disorderGeneticGlucoseGlycolysisGoalsHomeostasisHypoxiaImageImpairmentIn VitroIndividualIon ChannelLearningLinkLongevityMeasuresMediatingMentorshipMetabolicMetabolismMethodsMitochondriaModelingMolecularMonitorNADPNeuronal DysfunctionNeuronsNeurophysiology - biologic functionNeurosciencesOccupationsOpsinOrthologous GeneOxidation-ReductionPathway interactionsPentosephosphate PathwayPhaseProductionProteinsResearchResolutionRestSodium ChlorideSourceSpecific qualifier valueStimulusStressSystemTechniquesTimeTissuesTrainingUniversitiesVisualizationVisualization softwareWorkage relatedassay developmentblood glucose regulationcareercareer developmentcostexperiencefunctional declineglucose metabolismglucose uptakein vivoinsightnetwork dysfunctionneuralneuronal metabolismnovelpreventresponsesensorskillstool
项目摘要
A foundational, unanswered question of neural metabolism is whether the dramatic reduction in glucose uptake
observed during aging and Alzheimer's disease progression is a cause or consequence of the functional decline
of neurons. Current methods for visualizing the dynamics and effects of metabolism in vivo are too limited to
determine if this plays a role in eventual neuronal dysfunction. Notably, neurons are thought to primarily use
glucose for redox protection via the pentose phosphate pathway (PPP), rather than for production of ATP by
glycolysis, and when glycolysis is upregulated in neurons in vitro it leads to elevated redox damage and
apoptosis. As neuronal stimulation can also temporarily increase glycolytic flux, this suggests there may be an
uncharacterized competitive regulation of glucose use towards balancing either ATP production or redox
protection. Therefore, the goal of this proposal is to develop and utilize genetically-encoded biosensors for key
metabolites in C. elegans neurons to determine the relationship between elevated calcium activity, dynamic
states of glucose metabolism, and redox balance at single cell resolution. Thus, aim 1 of this proposal will utilize
the novel fluorescent sensor HYlight to dynamically measure changes in cellular glycolysis in vivo during
conditions of energy stress, such as with neuronal stimulation. The main goals of this aim are to (1) determine
the relationship between states of high ATP demand and induction of upregulated glycolysis, and (2) elucidate
the molecular mechanisms that enhance glycolysis under these conditions. Aim 2 will determine whether states
of high neuronal glycolysis also lead to increased redox sensitivity in single neurons. Genetically-encoded
biosensors for ROS and NADPH will be used to read out cellular redox state and enable development of an
assay for quantifying degradation in stimulation-induced calcium activity that results from cell-autonomous ROS
accumulation. Finally, the effects of reducing glucose within a single neuron over the lifespan of aging worms
will be compared in the context of calcium activity and behavior to determine whether these effects coincide with
those induced by elevated redox damage. This system described herein would provide a new avenue for
assessing the source and impact of ROS-induced decline and give significant insight into the importance of
balancing glucose metabolism in maintaining neuronal function and behavior during aging. Additionally, it will
provide important career development for the submitting candidate, who will train during the K99 phase under
the mentorship of Dr. Daniel Colón-Ramos at Yale University. This lab has significant expertise in behavioral
neuroscience, which will be critical for advancing the career goals of the candidate in linking single neuron biology
to behavioral changes during aging. This award will also support the candidate’s career goals by providing an
opportunity to learn critical research skills, mentorship expertise, and personalized guidance for navigating the
faculty job search. With this training the candidate will be able to successfully complete the proposed research
and transition to an independent faculty career.
神经代谢的一个基本的、尚未解答的问题是葡萄糖摄取的急剧减少是否
在衰老和阿尔茨海默病进展过程中观察到的现象是功能衰退的原因或结果
神经元。目前可视化体内代谢动态和影响的方法过于有限
确定这是否在最终的神经元功能障碍中起作用。值得注意的是,神经元被认为主要使用
葡萄糖通过磷酸戊糖途径 (PPP) 进行氧化还原保护,而不是通过
糖酵解,当体外神经元中糖酵解上调时,会导致氧化还原损伤升高
细胞凋亡。由于神经元刺激也可以暂时增加糖酵解通量,这表明可能存在
葡萄糖使用的非典型竞争性调节,以平衡 ATP 产生或氧化还原
保护。因此,该提案的目标是开发和利用基因编码生物传感器来实现关键
线虫神经元中的代谢物以确定钙活性升高、动态之间的关系
单细胞分辨率下的葡萄糖代谢状态和氧化还原平衡。因此,本提案的目标 1 将利用
新型荧光传感器 HYlight 可动态测量体内细胞糖酵解的变化
能量应激条件,例如神经元刺激。该目标的主要目标是 (1) 确定
高 ATP 需求状态与糖酵解上调诱导之间的关系,以及 (2) 阐明
在这些条件下增强糖酵解的分子机制。目标 2 将确定状态是否
高神经元糖酵解也会导致单个神经元氧化还原敏感性增加。基因编码
ROS 和 NADPH 生物传感器将用于读取细胞氧化还原状态,并能够开发
用于量化由细胞自主 ROS 引起的刺激诱导的钙活性降解的测定
积累。最后,减少单个神经元内的葡萄糖对衰老线虫寿命的影响
将在钙活性和行为的背景下进行比较,以确定这些影响是否与
那些由氧化还原损伤升高引起的。本文描述的该系统将为
评估 ROS 引起的衰退的来源和影响,并深入了解 ROS 的重要性
平衡葡萄糖代谢以维持衰老过程中的神经元功能和行为。此外,它将
为提交候选人提供重要的职业发展,他们将在 K99 阶段接受培训
耶鲁大学 Daniel Colón-Ramos 博士的指导。该实验室在行为学方面拥有丰富的专业知识
神经科学,这对于推进候选人连接单神经元生物学的职业目标至关重要
衰老过程中的行为变化。该奖项还将通过提供
有机会学习关键的研究技能、指导专业知识以及导航的个性化指导
教师求职。通过这次培训,候选人将能够成功完成拟议的研究
并过渡到独立的教师职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Wolfe其他文献
Aaron Wolfe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}














{{item.name}}会员




