Integration of seasonal cues to modulate neuronal plasticity
整合季节性线索来调节神经元可塑性
基本信息
- 批准号:10723977
- 负责人:
- 金额:$ 10.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsAreaAutopsyAwardBehaviorBehavioralBindingBiochemistryBiogenic AminesBiologyBrainCalendarCellsCuesDiseaseDopamineDrosophila genusEtiologyExhibitsExposure toFluorescent in Situ HybridizationFoundationsGenerationsGoalsHealthHourHumanHypothalamic structureImmunohistochemistryKnowledgeLightLinkMammalsMediatingMembraneMental DepressionMentorsMentorshipMethodsMicroscopyModelingMolecular GeneticsMotor ActivityNatureNeuronal PlasticityNeuronsNeuropeptidesNeurotransmittersOrganismOutcomeOutputPeptidesPeriplasmic Binding ProteinsPhotoperiodPhysiologyPositioning AttributePostdoctoral FellowPrevalenceProcessProteinsReportingResearchResearch PersonnelResolutionRoleSeasonal Affective DisorderSeasonal VariationsSeasonsSerotoninSignal TransductionStructureSynapsesSystemTemperatureTestingTherapeuticTimeTrainingVariantcareercircadiancircadian pacemakerday lengthdensitydopaminergic neurondynamic systemflyfunctional plasticityhuman diseasein vivoinsightlight intensityneurogeneticsneuronal circuitryparaventricular nucleusphotoperiodicityresponsesensorsensory integrationsocialsuccesssuprachiasmatic nucleustooltranscriptomics
项目摘要
Project Summary
Organisms adapt to seasonal changes in environmental conditions to survive. These adaptations rely
predominantly on photoperiod (i.e., daylength), but are also influenced by temperature. Recent studies indicate
that photoperiodic changes affect the neuronal composition of brain areas involved in circadian (i.e., daily)
timekeeping and modulate the number of dopaminergic neurons, in a process known as neurotransmitter
switching. Other studies show that the brain also undergoes profound structural changes across seasons.
However, the relationship between these functional and structural changes in the brain and seasonal adaptations
remains a major gap in knowledge. Moreover, whether other relevant seasonal cues, in particular temperature,
contribute to these changes is not known. The overall goal of this project is to understand the nature and role
of neuronal plasticity in the integration of seasonal cues to promote seasonal adaptations. My hypothesis is
that seasonal adaptations are mediated by functional and structural plasticity in neurons from circadian
and aminergic circuits in response to environmental cues. To test this, I propose 3 specific aims: investigate
structural and functional plasticity of (1) the circadian clock neuronal network and of (2) aminergic circuits in
response to seasonal cues and its impact on social and locomotor behavior, and (3) determine how the plastic
changes in the circadian clock and aminergic circuits regulate brain connectivity and encode the behavioral
output of these circuits. I will accomplish this project in the genetically tractable Drosophila model and will
leverage a combination of versatile neurogenetics, high-resolution microscopy, and well-established behavioral
analysis.
Thus far in my postdoctoral career in the Chiu lab at UC Davis, I obtained training in molecular genetics
and biochemistry, which I used to explore the role of circadian peptides in modulating seasonal adaptations in
Drosophila. Moving forward, I will build on my current research to study the neuronal mechanisms of seasonal
plasticity and behavior. During the K99 training period, I will use available tools in Drosophila to assess the
functional and structural changes in the circadian clock neurons and aminergic circuits in response to seasonal
cues. Moreover, I will test the functional consequences of these changes by using available genetically encoded
sensors and by generating new, more sensitive, sensors to assess aminergic function in vivo under the guidance
of Dr. Lin Tian. I will expand the use of these tools in the R00 stage to determine how the interaction between
these two circuit systems modulate their functions and how they affect seasonal behavior concertedly. I believe
that the mentorship of Drs. Chiu and Tian, together with the support provided by the K99/R00 award, will allow
me to build a strong foundation that will enable my success as an independent investigator. The results of the
proposed studies will elucidate the neuronal basis underlying sensory integrations in the context of seasonal
adaptations, shedding light on the mechanisms behind seasonal modulation of health physiology and disorders.
项目摘要
生物适应环境条件的季节性变化以生存。这些适应依赖于
主要依赖于光周期(即,日照长度),但也受到温度的影响。最近的研究表明
光周期变化影响昼夜节律中涉及的脑区域的神经元组成(即,每日)
计时和调节多巴胺能神经元的数量,这一过程被称为神经递质
切换其他研究表明,大脑在不同季节也会发生深刻的结构变化。
然而,大脑中这些功能和结构变化与季节适应之间的关系
仍然是一个重大的知识缺口。此外,是否其他相关的季节线索,特别是温度,
对这些变化的贡献是未知的。本项目的总体目标是了解
神经元可塑性在整合季节性线索,以促进季节性适应。我的假设是
季节性适应是由昼夜节律神经元的功能和结构可塑性介导的,
和胺能回路对环境线索的反应。为了验证这一点,我提出了三个具体目标:调查
结构和功能可塑性(1)昼夜节律钟神经元网络和(2)胺能电路,
对季节性线索的反应及其对社会和运动行为的影响,以及(3)确定塑料如何
生物钟和胺能回路的变化调节大脑的连通性,
这些电路的输出。我将在遗传学上易于处理的果蝇模型中完成这个项目,
利用多功能神经遗传学、高分辨率显微镜和成熟的行为学的组合,
分析.
到目前为止,在我的博士后生涯中,在加州大学戴维斯分校的邱实验室,我获得了分子遗传学的培训
和生物化学,我用它来探索昼夜节律肽在调节季节性适应中的作用,
果蝇展望未来,我将在我目前的研究基础上,研究季节性神经元机制。
可塑性和行为。在K99培训期间,我将使用果蝇中可用的工具来评估
昼夜节律钟神经元和胺能回路在季节性变化中的功能和结构变化
线索此外,我将使用可用的基因编码来测试这些变化的功能后果。
传感器,并通过产生新的,更敏感的传感器,以评估在指导下,在体内胺能功能
林天博士我将在R 00阶段扩展这些工具的使用,以确定
这两个回路系统协调地调节它们的功能以及它们如何影响季节性行为。我相信
赵博士和田博士的指导,以及K99/R 00奖提供的支持,将使
我希望我能建立一个坚实的基础,使我能够成功地成为一名独立的调查员。的结果
拟议的研究将阐明在季节性环境中感觉整合的神经基础,
适应,揭示了健康生理和疾病的季节性调节背后的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergio Ignacio Hidalgo Sotelo其他文献
Sergio Ignacio Hidalgo Sotelo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 10.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists