Integrated multi-tissue 13C flux analysis platform to assess renal metabolism in vivo
用于评估体内肾脏代谢的集成多组织 13C 通量分析平台
基本信息
- 批准号:10727785
- 负责人:
- 金额:$ 23.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsBiochemical PathwayBiological AssayCardiovascular DiseasesCatheterizationCathetersCell SeparationChronicChronic Kidney FailureClinicClosure by clampCollaborationsComputer softwareConsciousDatabasesDevelopmentDiabetic NephropathyDiagnosisDiseaseDyslipidemiasEducational workshopEndocrineEndotheliumFastingFutureGeneticGluconeogenesisGlucoseGlucose ClampGoalsHealthHeartHepaticHyperinsulinismHypertensionHypoglycemiaIndividualInfusion proceduresInsulinInsulin ResistanceInterventionIsotope LabelingIsotopesKidneyKidney DiseasesKnock-outKnowledgeLabelLiverLocationMeasurementMeasuresMetabolicMetabolic syndromeMetabolismMethodsMissionModificationMusNitric OxideNon-Insulin-Dependent Diabetes MellitusObesityOrganOutcomePathogenesisPathologicPathway interactionsPatternPharmacologic SubstancePhenotypePhysiologicalProceduresPublic HealthPublicationsPublishingRegulationResearchResearch PersonnelResolutionRiskSamplingServicesSliceSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationTechnologyTechnology AssessmentTestingTimeTissue ExtractsTissuesTracerTrainingUnited States National Institutes of HealthWorkdb/db mousedietarydisorder preventioneuglycemiaheart metabolismin vivoinnovationkidney cortexkidney medullakidney metabolismliver metabolismmass spectrometric imagingmathematical modelmetabolic phenotypemetabolomicsmouse modelnew technologynovelnovel strategiesnutrient metabolismregional differenceresponsesoftware developmentstable isotopetechnology development
项目摘要
PROJECT SUMMARY/ABSTRACT
Prior studies have assessed disease-associated changes in metabolic fluxes within a single organ but have not
attempted to simultaneously examine flux alterations within multiple organs that together control whole-body
nutrient metabolism. Furthermore, current isotope tracer technologies do not have the ability to dissect
metabolic flux differences between spatial locations within a single organ. The overall objective of this proposal
is to develop a multi-tissue 13C metabolic flux analysis (MFA) platform to assess kidney metabolism and its
interrelationship with liver and heart metabolism. The rationale for this technology is that it will enable
investigators to address important questions about in vivo regulation of renal metabolism that cannot be
answered through studies of single organs or isolated cells/tissues. The research builds from our recently
published study wherein renal and hepatic contributions to gluconeogenesis (GNG) were simultaneously
assessed in fasted mice. To our knowledge, this was the first time 13C MFA had been applied to assess
interactions between liver and kidney fluxes in a live animal. There is now a critical need to, first, expand
this flux measurement technology to include glycolytic tissues and, second, test whether regional differences in
metabolic fluxes can be distinguished within the kidney. The first aim will establish a multi-organ 13C MFA
platform to simultaneously quantify in vivo metabolism of gluconeogenic and glycolytic tissues of the kidneys,
liver, and heart. Mice with veinous and arterial catheters will receive 13C-glucose infusions during
hyperinsulinemic-euglycemic or hyperinsulinemic-hypoglycemic clamps. In each condition, the isotopes,
measurements, and mathematical modeling procedures will be optimized to precisely determine metabolic
fluxes in each tissue. We will then apply this novel platform to assess metabolic flux alterations in a relevant
animal model of diabetic kidney disease: BKS db/db mice with endothelial nitric oxide knockout (eNOS−/−). The
second aim will expand 13C-labeled metabolite measurements to assess spatially resolved metabolism in the
kidney. Untargeted high-resolution LC-MS/MS profiling will be applied to tissue extracts, and metabolites
enriched by 13C-glucose will be identified using novel software that screens for hits against the KEGG
Compound Database. Then, MALDI-based imaging mass spectrometry (IMS) of kidney tissue slices will be
applied to locate these labeled metabolite features, determine their spatial patterns of 13C enrichment, and
perform 13C MFA to assess metabolic fluxes within different kidney regions. The proposed research is
innovative because it will establish new technologies for quantifying flux phenotypes of integrated multi-tissue
metabolic networks in live animals. The analysis platform will be implemented as a core service of the
Vanderbilt Mouse Metabolic Phenotyping Center and Vanderbilt O’Brien Kidney Center. The research is
significant because it will enable future studies to assess how metabolism is dysregulated during progression
of kidney disease and how treatments that target renal pathways impact whole-body metabolic health.
项目总结/摘要
先前的研究已经评估了单个器官内代谢通量的疾病相关变化,但没有
试图同时检查共同控制全身的多个器官内的通量变化
营养代谢此外,目前的同位素示踪剂技术不具有解剖
单个器官内的空间位置之间的代谢通量差异。本提案的总体目标是
是开发一个多组织13 C代谢通量分析(MFA)平台,以评估肾脏代谢及其
与肝脏和心脏代谢的相互关系。这项技术的基本原理是,
研究者解决关于肾代谢的体内调节的重要问题,
通过对单个器官或分离的细胞/组织的研究来回答。这项研究建立在我们最近
已发表的一项研究,其中肾脏和肝脏对胚胎发生(GNG)的贡献同时存在,
在禁食小鼠中评估。据我们所知,这是第一次将13 C MFA应用于评估
在活体动物中肝脏和肾脏流量之间的相互作用。现在迫切需要首先扩大
这种通量测量技术包括糖酵解组织,其次,测试糖酵解组织的区域差异是否存在
可以在肾内区分代谢通量。第一个目标是建立一个多器官13 C MFA
同时定量肾脏的生血管和糖酵解组织的体内代谢的平台,
肝脏和心脏具有静脉和动脉导管的小鼠将接受13 C-葡萄糖输注,
高胰岛素-正常血糖或高胰岛素-低血糖钳夹。在每种情况下,同位素,
测量和数学建模程序将被优化,以精确地确定代谢
每个组织中的流量。然后,我们将应用这个新的平台,以评估代谢通量的改变,在相关的
糖尿病肾病动物模型:内皮型一氧化氮敲除(eNOS-/-)的BKS db/db小鼠。的
第二个目标是扩展13 C标记的代谢物测量,以评估空间分辨代谢,
肾将对组织提取物和代谢物进行非靶向高分辨率LC-MS/MS分析
富含13 C-葡萄糖的细胞将使用新的软件进行鉴定,该软件筛选针对KEGG的命中物
复合数据库。然后,将对肾组织切片进行基于MALDI的成像质谱(IMS)。
应用于定位这些标记的代谢物特征,确定其13 C富集的空间模式,以及
进行13 C MFA以评估不同肾脏区域内的代谢通量。拟议的研究是
创新,因为它将建立新的技术,用于量化整合的多组织的通量表型
活体动物的代谢网络。分析平台将作为
范德比尔特小鼠代谢表型中心和范德比尔特奥布莱恩肾脏中心。这项研究是
重要的是,它将使未来的研究能够评估代谢在进展过程中如何失调
以及针对肾脏通路的治疗如何影响全身代谢健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jamey D. Young其他文献
Hypoxia uncouples HIF gene transcription and metabolic flux in proliferating primary cells
缺氧使增殖原代细胞中的 HIF 基因转录和代谢通量解耦
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Courtney A. Copeland;B. Olenchock;Jamey D. Young;J. Loscalzo;W. Oldham - 通讯作者:
W. Oldham
Pool size measurements improve precision of flux estimates but increase sensitivity to unmodeled reactions outside the core network in isotopically nonstationary metabolic flux analysis (INST‐MFA)
池大小测量提高了通量估计的精度,但提高了同位素非平稳代谢通量分析 (INST-MFA) 中对核心网络外部未建模反应的敏感性
- DOI:
10.1002/biot.202000427 - 发表时间:
2022 - 期刊:
- 影响因子:4.7
- 作者:
Amy O Zheng;Anna Sher;Daniel Fridman;C. Musante;Jamey D. Young - 通讯作者:
Jamey D. Young
Award Number: W81XWH-12-1-0383 TITLE: Targeting Redox Homeostasis in LKB1-Deficient NSCLC
奖项编号:W81XWH-12-1-0383 标题:针对 LKB1 缺陷型 NSCLC 中的氧化还原稳态
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Jamey D. Young - 通讯作者:
Jamey D. Young
Learning from the Steersman: A Natural History of Cybernetic Models
向舵手学习:控制论模型的自然史
- DOI:
10.1021/acs.iecr.5b01315 - 发表时间:
2015 - 期刊:
- 影响因子:4.2
- 作者:
Jamey D. Young - 通讯作者:
Jamey D. Young
Accelerating Strain Engineering using Desorption Electrospray Ionization-Imaging Mass Spectrometry and Untargeted Molecular Analysis of Intact Microbial Colonies
使用解吸电喷雾电离成像质谱和完整微生物菌落的非靶向分子分析加速菌株工程
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Berkley M. Ellis;P. Babele;Jody C. May;C. Johnson;Brian F. Pfleger;Jamey D. Young;J. McLean - 通讯作者:
J. McLean
Jamey D. Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jamey D. Young', 18)}}的其他基金
In Vivo 2H/13C Metabolic Flux Analysis of NASH Pathogenesis
NASH 发病机制的体内 2H/13C 代谢通量分析
- 批准号:
9276004 - 财政年份:2015
- 资助金额:
$ 23.78万 - 项目类别:
In Vivo 2H/13C Metabolic Flux Analysis of NASH Pathogenesis
NASH 发病机制的体内 2H/13C 代谢通量分析
- 批准号:
8946823 - 财政年份:2015
- 资助金额:
$ 23.78万 - 项目类别:
Role of Glutaminolysis in the Myc-induced Metabolic Phenotype of Tumor Cells
谷氨酰胺分解在 Myc 诱导的肿瘤细胞代谢表型中的作用
- 批准号:
8296584 - 财政年份:2011
- 资助金额:
$ 23.78万 - 项目类别:
Role of Glutaminolysis in the Myc-induced Metabolic Phenotype of Tumor Cells
谷氨酰胺分解在 Myc 诱导的肿瘤细胞代谢表型中的作用
- 批准号:
8191915 - 财政年份:2011
- 资助金额:
$ 23.78万 - 项目类别:
Nonstationary Isotopic Tracer Analysis of Hepatocytes
肝细胞的非稳态同位素示踪分析
- 批准号:
7159345 - 财政年份:2005
- 资助金额:
$ 23.78万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 23.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists