Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
基本信息
- 批准号:10727499
- 负责人:
- 金额:$ 28.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcousticsAddressAdoptionAffectAnimal ModelBiomedical ResearchCell physiologyCellsCompensationDetectionDevelopmentDevicesDrug Delivery SystemsEngineeringEnvironmentExtracellular MatrixFluorescenceFluorescence MicroscopyFrequenciesGenetically Modified AnimalsGoalsImageImaging technologyIndividualInvestigationLabelLateralLightMeasurementMethodsMicroscopyMicrospheresMultimodal ImagingOptical Coherence TomographyOpticsOutcomePathogenicityPerformancePositioning AttributeReproducibilityResearchResolutionSamplingScanningScienceSiliconSpecimenSystemTechniquesTechnologyThickTimeTissuesTransgenic MiceVariantarmbiomaterial compatibilitycell behaviorconfocal imagingdesignflexibilityimaging capabilitiesimaging modalityimaging systemin vivoin vivo fluorescencein vivo imaginginterestlensmetermultimodalitynanoparticle drugnovelresearch facilityresponse to injurytemporal measurementtooltwo photon microscopy
项目摘要
PROJECT SUMMARY
The rapid adoption of genetically modified animals and fluorescently labeled biocompatible nanoparticles for
drug delivery in biomedical science have increased demand for imaging technologies capable of fast
volumetric imaging to enable longitudinal investigations of cell dynamics in their natural environment. The
complexity of information required to understand tissue response to injury and treatment has also generated
increased interest in multimodal imaging systems that combine complementary performance strengths.
In this regard, we have developed an integrated dual-modality imaging system that combines optical
coherence microscopy (OCM) and dual-channel confocal fluorescence microscopy (CFM) to enable the
simultaneous measurements of fluorescence and reflectance from deep tissue layers. The combined system
provides a unique opportunity to inform cells’ behavior in their natural environment by offering complementary
information not available with either system alone. CFM interogates the distribution of fluorescently labeled
molecules in cells. OCM is a label-free, episcopic method providing information about the cell boundaries,
extracellular matrix, and thickness changes in layers of normal and pathogenic tissues.
Despite its potential, the integration of these technologies is incomplete without the capability of concurrent
volumetric imaging allowing the tracking of cell dynamics progressively in the same specimen. As for scanning-
based systems, fast volumetric imaging in OCM and CFM requires dynamic focusing at the level of individual
scanning points, which is challenging due to the limited temporal resolution of dynamic focusing devices.
This project aims to establish the capability of the tunable acoustic gradient lens, the fastest dynamic
focusing technology to date, in OCM and CFM to enable a fast volumetric and concurrent imaging of
depth-resolved reflectance and fluorescence from deep tissue layers in vivo. This integration will have a
tremendous impact on biomedical research as OCM and CFM technologies remain the most affordable, flexible,
and the latter is readily available in many research facilities. We propose the following two specific aims:
Aim 1: Enable fast volumetric imaging in confocal fluorescence microscopy.
Aim 2: Enable extended depth-of-field in optical coherence microscopy.
Significance
The ability to concurrently acquire volumetric information such as reflectance and fluorescence rapidly from
deep tissue layers will provide a powerful tool for longitudinal investigations into developmental and
pathophysiological mechanisms in various research fields and facilitate in vivo cell tracking in the same
specimen while increasing the rigor and reproducibility of studies by decreasing the inter-subject variability that
can affect the outcomes of cellular processes.
项目总结
转基因动物和荧光标记的生物相容纳米颗粒的快速采用
生物医学中的药物输送增加了对能够快速成像技术的需求
体积成像技术可对自然环境中的细胞动力学进行纵向研究。这个
理解组织对损伤和治疗的反应所需的复杂信息也产生了
对结合互补性能优势的多模式成像系统的兴趣与日俱增。
在这方面,我们开发了一种集成的双模式成像系统,它结合了光学
相干显微镜(OCM)和双通道共聚焦荧光显微镜(CFM)使
同时测量深层组织的荧光和反射率。组合式系统
提供独特的机会来了解细胞在其自然环境中的行为,通过提供补充
这两个系统单独提供的信息都不可用。荧光标记的CFM标记的分布
细胞中的分子。OCM是一种提供关于细胞边界的信息的无标记、可观察的方法,
细胞外基质,正常组织和病变组织各层的厚度变化。
尽管这些技术有潜力,但如果没有并发能力,这些技术的集成是不完整的
体积成像允许在同一样本中逐步跟踪细胞动力学。至于扫描-
基于系统,OCM和CFM中的快速体积成像需要在个体水平上进行动态聚焦
由于动态调焦设备的时间分辨率有限,这是一项具有挑战性的任务。
本项目旨在建立可调谐声学梯度透镜的能力,最快的动态
到目前为止,在OCM和CFM中使用聚焦技术,可以实现快速的体积成像和并发成像
体内深层组织的深度分辨反射和荧光。这一整合将具有
对生物医学研究产生巨大影响,因为OCM和CFM技术仍然是最经济、最灵活、
而后者在许多研究机构中都很容易获得。我们提出以下两个具体目标:
目的1:在共聚焦荧光显微镜中实现快速体积成像。
目标2:在光学相干显微镜中实现扩展景深。
意义
能够同时从以下位置快速获取体积信息,如反射率和荧光
深层组织层将提供一个强大的工具,纵向研究发育和
不同研究领域的病理生理机制并促进体内细胞追踪
样本,同时通过减少研究对象间的可变性来增加研究的严谨性和重复性
会影响细胞过程的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrice Tankam其他文献
Patrice Tankam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 28.43万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 28.43万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 28.43万 - 项目类别:
Standard Grant