Overcoming Barriers to retinal ganglion cell replacement in experimental glaucoma

克服实验性青光眼视网膜神经节细胞替代的障碍

基本信息

项目摘要

Project Summary / Abstract Retinal ganglion cells (RGCs) are the output neurons of the retina responsible for transmitting information about the visual world from the eye to the brain. Thus, RGC damage and loss, a characteristic of many disorders of the visual system, has the direct consequence of vision impairment, or blindness when RGC loss is more severe. Our translation-enabling approach builds on a very well-established, thoroughly characterized and validated experimental glaucoma (EG) model. This affords our study the distinct advantage of conducting each of the proposed hypothesis-driven experiments within the framework of a reliable model of RGC degeneration that closely recapitulates the anatomical changes and pathophysiological processes observed in human glaucoma. Moreover, our preliminary results establish the feasibility of our approach, demonstrating that we have already achieved successful transplantation of human induced pluripotent stem cell (iPSC)-derived RGCs into the EG retina, while also characterizing major barriers that require targeted solutions. Hence, we propose to employ a series of manipulations to both donor RGCs and the recipient EG retina in order to overcome the existing barriers to RGC replacement and thus make a giant leap forward toward realization of the audacious goal to restore vision in persons blinded by glaucoma or other optic neuropathies. Each of our Aims is soundly based on existing knowledge of the relevant biology and will lead to meaningful enhancement of donor RGC survival, integration, and function in the glaucomatous EG retina. We will utilize rigorous quantitative electrophysiological and anatomical assessments for testing the hypothesis at the core of each Aim. Aim 1 will target neuroinflammation to improve the long-term survival of transplanted RGCs. We will create hypoimmunogenic iPSCs and manipulate the host retinal environment using systemic immunosuppressive agents or inhibition of microglial activation. Aim 2 will augment donor cell survival and integration through modulation of cellular age, with host retinal glia experimentally induced to an immature state through cellular rejuvenation. Aim 3 will enhance the connectivity and axon outgrowth of donor RGCs in the retina. Donor RGCs will be edited to express hM3Dq DREADD receptors for chemogenetic stimulation and mTOR activators. Thrombospondin will be overexpressed in host retinal astrocytes and donor RGCs, leveraging astrocyte-derived factors that promote axonal outgrowth and synaptogenesis. Together, these Aims will generate a wealth of knowledge and resources for the scientific community and bring us significantly closer to the reality of vision restoration through RGC replacement.
项目总结/摘要 视网膜神经节细胞(Retinalganglioncells,RGC)是视网膜上负责传递信息的输出神经元 关于从眼睛到大脑的视觉世界。因此,RGC损伤和损失,许多疾病的特征, 的视觉系统,有视力障碍的直接后果,或失明时,RGC损失更多 严重。我们的预防方法建立在一个非常完善的,彻底的特点, 验证的实验性青光眼(EG)模型。这为我们的研究提供了独特的优势, 在研资局退变的可靠模型框架内, 其紧密地概括了在人类中观察到的解剖学变化和病理生理学过程, 青光眼此外,我们的初步结果建立了我们的方法的可行性,表明我们有 已经成功地将人诱导多能干细胞(iPSC)衍生的RGC移植到 EG视网膜,同时也表征了需要有针对性的解决方案的主要障碍。因此,我们建议 对供体RGC和受体EG视网膜进行一系列操作,以克服 现有的障碍,以取代研资局,从而使巨大的飞跃,实现大胆的 目的是恢复因青光眼或其他视神经病变而失明的人的视力。我们的每一个目标都是健全的 基于相关生物学的现有知识,并将导致捐助者研究资助委员会的有意义的增强 在脑水肿EG视网膜中的存活、整合和功能。我们将利用严格的定量 电生理学和解剖学评估,以检验每个目标的核心假设。目标1将 靶向神经炎症以改善移植的RGC的长期存活。我们将创建 低免疫原性iPSC和操纵宿主视网膜环境使用全身免疫抑制 试剂或抑制小胶质细胞活化。Aim 2将通过以下途径增加供体细胞的存活和整合: 细胞年龄的调节,通过细胞凋亡实验性诱导宿主视网膜胶质细胞至未成熟状态, 复兴前程的目的3将增强供体RGCs在视网膜中的连接性和轴突生长。捐助方区域政府理事会 将被编辑以表达用于化学发生刺激的hM 3Dq DREADD受体和mTOR激活剂。 血小板反应蛋白将在宿主视网膜星形胶质细胞和供体RGC中过表达,从而利用星形胶质细胞衍生的血小板反应蛋白。 促进轴突生长和突触发生的因子。这些目标将共同产生丰富的 为科学界提供知识和资源,使我们更接近现实的愿景 通过RGC替换。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Stephen Meyer其他文献

Jason Stephen Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Stephen Meyer', 18)}}的其他基金

Targeting P2RX7 Signaling as a Biomarker for ADRD
将 P2RX7 信号作为 ADRD 生物标志物
  • 批准号:
    10739960
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
Establishing a human cellular model of retinal ganglion cell compartmentalization in neurodegeneration and neuroinflammation
建立神经变性和神经炎症中视网膜神经节细胞区室化的人类细胞模型
  • 批准号:
    10478218
  • 财政年份:
    2021
  • 资助金额:
    $ 9.34万
  • 项目类别:
Establishing a human cellular model of retinal ganglion cell compartmentalization in neurodegeneration and neuroinflammation
建立神经变性和神经炎症中视网膜神经节细胞区室化的人类细胞模型
  • 批准号:
    10279666
  • 财政年份:
    2021
  • 资助金额:
    $ 9.34万
  • 项目类别:
Derivation and disease modeling of human stem cell-derived retinal ganglion cells
人类干细胞来源的视网膜神经节细胞的衍生和疾病模型
  • 批准号:
    9187803
  • 财政年份:
    2014
  • 资助金额:
    $ 9.34万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了