Overcoming Barriers to retinal ganglion cell replacement in experimental glaucoma

克服实验性青光眼视网膜神经节细胞替代的障碍

基本信息

项目摘要

Project Summary / Abstract Retinal ganglion cells (RGCs) are the output neurons of the retina responsible for transmitting information about the visual world from the eye to the brain. Thus, RGC damage and loss, a characteristic of many disorders of the visual system, has the direct consequence of vision impairment, or blindness when RGC loss is more severe. Our translation-enabling approach builds on a very well-established, thoroughly characterized and validated experimental glaucoma (EG) model. This affords our study the distinct advantage of conducting each of the proposed hypothesis-driven experiments within the framework of a reliable model of RGC degeneration that closely recapitulates the anatomical changes and pathophysiological processes observed in human glaucoma. Moreover, our preliminary results establish the feasibility of our approach, demonstrating that we have already achieved successful transplantation of human induced pluripotent stem cell (iPSC)-derived RGCs into the EG retina, while also characterizing major barriers that require targeted solutions. Hence, we propose to employ a series of manipulations to both donor RGCs and the recipient EG retina in order to overcome the existing barriers to RGC replacement and thus make a giant leap forward toward realization of the audacious goal to restore vision in persons blinded by glaucoma or other optic neuropathies. Each of our Aims is soundly based on existing knowledge of the relevant biology and will lead to meaningful enhancement of donor RGC survival, integration, and function in the glaucomatous EG retina. We will utilize rigorous quantitative electrophysiological and anatomical assessments for testing the hypothesis at the core of each Aim. Aim 1 will target neuroinflammation to improve the long-term survival of transplanted RGCs. We will create hypoimmunogenic iPSCs and manipulate the host retinal environment using systemic immunosuppressive agents or inhibition of microglial activation. Aim 2 will augment donor cell survival and integration through modulation of cellular age, with host retinal glia experimentally induced to an immature state through cellular rejuvenation. Aim 3 will enhance the connectivity and axon outgrowth of donor RGCs in the retina. Donor RGCs will be edited to express hM3Dq DREADD receptors for chemogenetic stimulation and mTOR activators. Thrombospondin will be overexpressed in host retinal astrocytes and donor RGCs, leveraging astrocyte-derived factors that promote axonal outgrowth and synaptogenesis. Together, these Aims will generate a wealth of knowledge and resources for the scientific community and bring us significantly closer to the reality of vision restoration through RGC replacement.
项目概要/摘要 视网膜神经节细胞(RGC)是视网膜的输出神经元,负责传递信息 关于从眼睛到大脑的视觉世界。因此,RGC 损伤和丧失是许多疾病的一个特征 当 RGC 损失更多时,会直接导致视力障碍或失明 严重。我们的翻译支持方法建立在一个非常完善的、彻底表征和 验证了实验性青光眼(EG)模型。这为我们的研究提供了进行每项研究的独特优势 在 RGC 变性的可靠模型框架内提出的假设驱动实验 密切概括了在人体中观察到的解剖变化和病理生理过程 青光眼。此外,我们的初步结果证明了我们的方法的可行性,表明我们已经 已经成功将人类诱导多能干细胞(iPSC)衍生的 RGC 移植到 EG 视网膜,同时还描述了需要有针对性的解决方案的主要障碍。因此,我们建议 对供体 RGC 和受体 EG 视网膜进行一系列操作,以克服 RGC 替代的现有障碍,从而朝着实现大胆的目标迈出一大步 目标是恢复因青光眼或其他视神经病变而失明的人的视力。我们的每一个目标都是合理的 基于相关生物学的现有知识,将导致捐赠者 RGC 的有意义的增强 青光眼 EG 视网膜中的存活、整合和功能。我们将采用严格的定量 电生理学和解剖学评估,用于测试每个目标核心的假设。目标1将 靶向神经炎症以提高移植的 RGC 的长期存活率。我们将创造 低免疫原性 iPSC 并使用全身免疫抑制来操纵宿主视网膜环境 剂或抑制小胶质细胞活化。目标 2 将通过以下方式增强供体细胞的存活和整合 细胞年龄的调节,通过细胞实验将宿主视网膜神经胶质细胞诱导至不成熟状态 复兴。目标 3 将增强视网膜中供体 RGC 的连接和轴突生长。捐助者 RGC 将被编辑以表达用于化学遗传学刺激和 mTOR 激活剂的 hM3Dq DREADD 受体。 血小板反应蛋白将在宿主视网膜星形胶质细胞和供体 RGC 中过度表达,利用星形胶质细胞衍生的 促进轴突生长和突触发生的因素。这些目标共同将产生大量财富 为科学界提供知识和资源,使我们更加接近愿景的现实 通过 RGC 替换进行恢复。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Stephen Meyer其他文献

Jason Stephen Meyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Stephen Meyer', 18)}}的其他基金

Targeting P2RX7 Signaling as a Biomarker for ADRD
将 P2RX7 信号作为 ADRD 生物标志物
  • 批准号:
    10739960
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
Establishing a human cellular model of retinal ganglion cell compartmentalization in neurodegeneration and neuroinflammation
建立神经变性和神经炎症中视网膜神经节细胞区室化的人类细胞模型
  • 批准号:
    10478218
  • 财政年份:
    2021
  • 资助金额:
    $ 9.34万
  • 项目类别:
Establishing a human cellular model of retinal ganglion cell compartmentalization in neurodegeneration and neuroinflammation
建立神经变性和神经炎症中视网膜神经节细胞区室化的人类细胞模型
  • 批准号:
    10279666
  • 财政年份:
    2021
  • 资助金额:
    $ 9.34万
  • 项目类别:
Derivation and disease modeling of human stem cell-derived retinal ganglion cells
人类干细胞来源的视网膜神经节细胞的衍生和疾病模型
  • 批准号:
    9187803
  • 财政年份:
    2014
  • 资助金额:
    $ 9.34万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 9.34万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了