Integrative analysis of spatial transcriptomics with histology images and single cells
空间转录组学与组织学图像和单细胞的综合分析
基本信息
- 批准号:10733815
- 负责人:
- 金额:$ 54.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBackBar CodesBasic ScienceBehaviorBenchmarkingCell CommunicationCellsCellular MorphologyClinicalClinical ResearchCollaborationsCompanionsComputer softwareDataData AnalysesData SetDetectionDiseaseEnvironmentEye diseasesFrontotemporal DementiaGene ExpressionGene Expression ProfilingGenesGenomicsHematoxylin and Eosin Staining MethodHistologicHistologyImageJointsKidney DiseasesKnowledgeLearningLocationMalignant neoplasm of lungMapsMeasuresMethodologyMethodsModelingMotivationPathologyPerformanceResearch PersonnelResolutionSpottingsStainsStrokeStructureTechnologyTissue imagingTissuesTrainingTranslationsVisioncell typecostdisease diagnosishuman diseasemachine learning algorithmmachine learning methodmalignant stomach neoplasmmethod developmentmultimodal datanext generation sequencingnovelopen sourcesingle-cell RNA sequencingspatial integrationtranscriptometranscriptome sequencingtranscriptomicsultra high resolutionvirtual
项目摘要
PROJECT SUMMARY
The
function.
relative
disease
tissues in our body consist of diverse cell t ypes with each cell type specialized to carry out a particular
The behavior of a cell is influenced by its surrounding environment within a tissue. Knowledge of the
locations of different cells in a tissue is critical for understanding the spatial organization of cell types and
pathology.Although single-cell RNA sequencing (scRNA-seq) has made it possible to characterize cell
types and states at an unprecedented resolution, the lack of physical relationships among cells has hindered the
study of cell-cell communications within tissue context. Recent technology advances in spatial transcriptomics
(ST) have enabled gene expression profiling while retaining location information in tissues. A popular ST
technology is based on spatial barcoding followed by next-generation sequencing in which transcriptome-wide
gene expression is measured in spatially barcoded spots. Data from such ST technologies often include a high-
resolution hematoxylin and eosin (H&E)-stained histology image of the tissue section from which the gene
expression data are obtained. Although ST is powerful, such data are still expensive to generate. On the other
hand, it is relatively cheaper to generate H&E-stained histology images and scRNA-seq data. The main
motivation of this project is to leverage information in ST to gain additional knowledge from the relatively easy-
to-obtain histology images and scRNA-seq data. Building upon our expertise in statistical genomics, we propose
to develop novel machine learning methods to address key computational challenges when performing
integrative analysis of ST, histology images, and single cells. Our methods will jointly model gene expression
and histology to characterize the spatial organization of tissues and predict spatial gene expression from
histology images. The resulting spatial map from these analyses will further enable the spatial mapping of single
cells back to tissues. The proposed methods will be applied to public data and data generated from ongoing
collaborations in various diseases to evaluate their performance. The successful completion of this project will
allow researchers to take advantage of advanced machine learning algorithms to integrate ST, histology, and
single-cell data to gain a holistic view of the spatial organization of tissues.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyao Li其他文献
Mingyao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyao Li', 18)}}的其他基金
The Penn Human Precision Pain Center (HPPC): Discovery and Functional Evaluation of Human Primary Somatosensory Neuron Types at Normal and Chronic Pain Conditions
宾夕法尼亚大学人类精准疼痛中心 (HPPC):正常和慢性疼痛条件下人类初级体感神经元类型的发现和功能评估
- 批准号:
10806545 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Integrative analysis of bulk and single-cell RNA-seq data for cardiometabolic disease
心脏代谢疾病的批量和单细胞 RNA-seq 数据的综合分析
- 批准号:
10448317 - 财政年份:2021
- 资助金额:
$ 54.66万 - 项目类别:
Computational and functional strategies to decipher lncRNAs in human atherosclerosis
破译人类动脉粥样硬化中 lncRNA 的计算和功能策略
- 批准号:
10347301 - 财政年份:2020
- 资助金额:
$ 54.66万 - 项目类别:
Computational and functional strategies to decipher lncRNAs in human atherosclerosis
破译人类动脉粥样硬化中 lncRNA 的计算和功能策略
- 批准号:
10557797 - 财政年份:2020
- 资助金额:
$ 54.66万 - 项目类别:
Computational and functional strategies to decipher lncRNAs in human atherosclerosis
破译人类动脉粥样硬化中 lncRNA 的计算和功能策略
- 批准号:
10091516 - 财政年份:2020
- 资助金额:
$ 54.66万 - 项目类别:
Integrative analysis of bulk and single-cell RNA-seq data from human retina for age-related macular degeneration
对来自人类视网膜的大量和单细胞 RNA-seq 数据进行综合分析,以了解与年龄相关的黄斑变性
- 批准号:
10241966 - 财政年份:2020
- 资助金额:
$ 54.66万 - 项目类别:
Single-Cell Transcriptomic Analysis of Human Retina
人类视网膜的单细胞转录组分析
- 批准号:
10159930 - 财政年份:2019
- 资助金额:
$ 54.66万 - 项目类别:
Single-Cell Transcriptomic Analysis of Human Retina
人类视网膜的单细胞转录组分析
- 批准号:
10119528 - 财政年份:2019
- 资助金额:
$ 54.66万 - 项目类别:
Single-Cell Transcriptomic Analysis of Human Retina
人类视网膜的单细胞转录组分析
- 批准号:
9920150 - 财政年份:2019
- 资助金额:
$ 54.66万 - 项目类别:
相似国自然基金
基于Teach-back药学科普模式的慢阻肺患者吸入用药依从性及疗效研究
- 批准号:2024KP61
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Quench-Back保护的超导螺线管磁体失超过程数值模拟研究
- 批准号:51307073
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 54.66万 - 项目类别:
Continuing Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
- 批准号:
EP/Y003934/1 - 财政年份:2024
- 资助金额:
$ 54.66万 - 项目类别:
Research Grant
On the origin of very massive back holes
关于巨大背洞的起源
- 批准号:
DP240101786 - 财政年份:2024
- 资助金额:
$ 54.66万 - 项目类别:
Discovery Projects
Back to our roots: Re-activating Indigenous biocultural conservation
回到我们的根源:重新激活本土生物文化保护
- 批准号:
FT230100595 - 财政年份:2024
- 资助金额:
$ 54.66万 - 项目类别:
ARC Future Fellowships
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: MEZCAL: Methods for Extending the horiZontal Coverage of the Amoc Latitudinally and back in time (MEZCAL)
合作研究:NSFGEO-NERC:MEZCAL:扩展 Amoc 纬度和时间回水平覆盖范围的方法 (MEZCAL)
- 批准号:
2409764 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Standard Grant
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
- 批准号:
10626449 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
$ 54.66万 - 项目类别: