Identifying novel regenerative treatments for CNS injury in adult mammals
确定成年哺乳动物中枢神经系统损伤的新型再生疗法
基本信息
- 批准号:10735524
- 负责人:
- 金额:$ 49.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinAdultAxonBindingCervicalChronicClinicalClinical TrialsCombined Modality TherapyCytoskeletal ProteinsCytoskeletonDisabled PersonsDorsalEnvironmentFailureGene TargetingGenesGeneticGrowthGrowth ConesIndividualKnockout MiceLesionLocomotor RecoveryMammalsMicrofilamentsMicrotubulesModelingMolecular TargetMotorMusMyosin Type IINatural regenerationNeuronal InjuryNeuronsNonmuscle Myosin Type IIANonmuscle Myosin Type IIBParalysedPathway interactionsPatientsPeptidesPilot ProjectsPopulationProteinsRecoveryRecovery of FunctionRodentRoleSensorySignal PathwaySignal TransductionSpinal CordSpinal Cord ContusionsSpinal cord injurySynapsinsSystemic TherapyTherapeuticThoracic spinal cord structureTracerTranslatingWorkZinc Fingersantagonistaxon growthaxon injuryaxon regenerationaxonal degenerationcell growthcentral nervous system injurycombinatorialconditional knockoutdesigneffective therapyinhibitorinjury and repairmutantneuronal growthneurotransmissionnon-muscle myosinnovelpharmacologicregenerative approachregenerative treatmentrepairedsafety assessmenttargeted agenttherapeutic genetranscription factortranslational study
项目摘要
Abstract
We propose to study whether targeting both the transcription factor ZNF362 and cytoskeletal non-muscle
myosin IIA and IIB (NMIIA&B) will promote better axon regeneration and functional recovery after spinal cord
injury (SCI) than either approach alone. After SCI, severed axons fail to regenerate largely because of the
reduced intrinsic growth capacity of adult CNS neurons and the poor environment for axon extension. Treatments
to recover paralysis and other lost functions are not available and patients with SCI are often permanently
disabled. Many genes have been determined to control the regrowth failure of mature neurons, but none have
been translated to clinical use. There is a persistent need to identify better gene targets and therapeutic
strategies. ZNF362 is highly expressed in the CNS, but its major function in mammals remains largely unknown.
The PI’s group generated ZNF362 conditional knockout (cKO) mice and designed novel small peptides to block
ZNF362 function selectively. Our pilot studies suggest that ZNF362 strongly suppresses the growth capacity of
CNS neurons in adult rodents. After CNS injury, various inhibitory molecules around the lesion activate neuronal
RhoA, which, in turn, activates cytoskeletal NMIIA&B to condense actin filaments and restricts microtubule
protrusion and axon elongation. Because neuronal cytoskeleton is the major machinery to drive axon growth and
the converging targets of multiple signaling pathways that control axon growth, manipulating neuronal
cytoskeleton is also very attractive to promote significant CNS axon regeneration. We hypothesize that inhibiting
both ZNF362 and NMIIA&B represents a dual approach for enhancing neuronal growth capacity and reducing
environmental inhibition around the lesion. We propose to dissect potential critical roles of ZNF362 and NMIIA&B
for controlling regrowth of mature CNS neurons and to develop novel and effective strategies for promoting CNS
axon regeneration. We aim to stimulate robust axon regrowth and functional recovery in SCI rodents by
suppressing these genes using cKO mice and new selective antagonist peptides designed in our lab. In Aim 1,
we will study whether transgenically deleting ZNF362 and NMIIA&B acts synergistically to promote axon
regeneration and recovery in adult mice with SCI. Aim 2 proposes to determine whether blocking individual
ZNF362 and NMIIA&B signals pharmacologically with novel selective antagonists promotes axon regeneration
and recovery in adult rodents with SCI. In Aim 3, we plan to develop combination therapies that block both
ZNF362 and NMIIA&B signals, aiming to yield robust axon regrowth and functional recovery in adult rodents with
SCI. Based on the promising results of our pilot studies, we anticipate that our novel regenerative strategies will
significantly advance our ability to treat SCI. If our peptides are successful with rodent SCI models, we plan to
move this work to peptide safety assessments and further translational studies (e.g., cervical/chronic SCI and
clinical trials). Therefore, this project may facilitate identifying novel molecular targets for CNS repair and
highly effective strategies for treating CNS lesions.
抽象的
我们建议研究是否同时靶向转录因子 ZNF362 和细胞骨架非肌肉
肌球蛋白 IIA 和 IIB (NMIIA&B) 将促进脊髓损伤后更好的轴突再生和功能恢复
损伤(SCI)比单独使用任一方法更有效。 SCI 后,切断的轴突无法再生,主要是因为
成年中枢神经系统神经元的内在生长能力降低,轴突延伸的环境较差。治疗方法
无法恢复瘫痪和其他丧失的功能,SCI 患者通常会永久性地处于瘫痪状态。
禁用。许多基因已被确定可以控制成熟神经元的再生失败,但没有一个基因能够控制成熟神经元的再生失败。
已转化为临床应用。始终需要确定更好的基因靶标和治疗方法
策略。 ZNF362 在中枢神经系统中高度表达,但其在哺乳动物中的主要功能仍然很大程度上未知。
PI 团队培育了 ZNF362 条件敲除 (cKO) 小鼠,并设计了新型小肽来阻断
ZNF362 选择性发挥作用。我们的初步研究表明,ZNF362 强烈抑制
成年啮齿动物的中枢神经系统神经元。中枢神经系统损伤后,病灶周围的各种抑制分子激活神经元
RhoA,反过来激活细胞骨架 NMIIA&B 以浓缩肌动蛋白丝并限制微管
突出和轴突伸长。因为神经元细胞骨架是驱动轴突生长的主要机制
控制轴突生长、操纵神经元的多个信号通路的汇聚目标
细胞骨架对于促进显着的中枢神经系统轴突再生也非常有吸引力。我们假设抑制
ZNF362 和 NMIIA&B 都代表了增强神经元生长能力和减少神经元生长能力的双重方法。
病灶周围的环境抑制。我们建议剖析 ZNF362 和 NMIIA&B 的潜在关键作用
用于控制成熟中枢神经系统神经元的再生并开发促进中枢神经系统的新颖有效的策略
轴突再生。我们的目标是通过以下方式刺激 SCI 啮齿动物的强健轴突再生和功能恢复
使用 cKO 小鼠和我们实验室设计的新型选择性拮抗肽来抑制这些基因。在目标 1 中,
我们将研究转基因删除ZNF362和NMIIA&B是否协同作用以促进轴突
患有 SCI 的成年小鼠的再生和恢复。目标 2 建议确定是否阻止个体
ZNF362 和 NMIIA&B 通过新型选择性拮抗剂的药理学信号促进轴突再生
以及成年 SCI 啮齿动物的康复。在目标 3 中,我们计划开发联合疗法来阻断这两种疾病
ZNF362 和 NMIIA&B 信号,旨在使成年啮齿动物产生强劲的轴突再生和功能恢复
SCI。基于我们的试点研究的有希望的结果,我们预计我们的新颖的再生策略将
显着提高我们治疗 SCI 的能力。如果我们的肽在啮齿动物 SCI 模型中取得成功,我们计划
将这项工作转移到肽安全评估和进一步的转化研究(例如,宫颈/慢性 SCI 和
临床试验)。因此,该项目可能有助于识别中枢神经系统修复的新分子靶点
治疗中枢神经系统病变的高效策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHUXIN LI其他文献
SHUXIN LI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHUXIN LI', 18)}}的其他基金
Bioengineering of highly effective AAV vectors for noninvasive gene delivery to the nervous system
高效 AAV 载体的生物工程,用于将基因非侵入性传递至神经系统
- 批准号:
10597682 - 财政年份:2022
- 资助金额:
$ 49.9万 - 项目类别:
Bioengineering of highly effective AAV vectors for noninvasive gene delivery to the nervous system
高效 AAV 载体的生物工程,用于将基因非侵入性传递至神经系统
- 批准号:
10453167 - 财政年份:2022
- 资助金额:
$ 49.9万 - 项目类别:
VRC: Develop regenerative therapies for neurological vision loss
VRC:开发神经性视力丧失的再生疗法
- 批准号:
10395744 - 财政年份:2021
- 资助金额:
$ 49.9万 - 项目类别:
VRC: Develop regenerative therapies for neurological vision loss
VRC:开发神经性视力丧失的再生疗法
- 批准号:
10686123 - 财政年份:2021
- 资助金额:
$ 49.9万 - 项目类别:
Develop a combinatorial therapy for spinal cord injury
开发脊髓损伤的组合疗法
- 批准号:
10408725 - 财政年份:2018
- 资助金额:
$ 49.9万 - 项目类别:
Develop a combinatorial therapy for spinal cord injury
开发脊髓损伤的组合疗法
- 批准号:
10189722 - 财政年份:2018
- 资助金额:
$ 49.9万 - 项目类别:
Therapeutic Strategies for Repairing Optic Nerve Injury
修复视神经损伤的治疗策略
- 批准号:
9302433 - 财政年份:2014
- 资助金额:
$ 49.9万 - 项目类别:
Therapeutic Strategies for Repairing Optic Nerve Injury
修复视神经损伤的治疗策略
- 批准号:
8889260 - 财政年份:2014
- 资助金额:
$ 49.9万 - 项目类别:
CSPG receptors and PTEN in CNS regeneration
CSPG 受体和 PTEN 在 CNS 再生中的作用
- 批准号:
8696112 - 财政年份:2014
- 资助金额:
$ 49.9万 - 项目类别:
Therapeutic Strategies for Repairing Optic Nerve Injury
修复视神经损伤的治疗策略
- 批准号:
8749408 - 财政年份:2014
- 资助金额:
$ 49.9万 - 项目类别:
相似海外基金
Guidance and beyond: Role of axon guidance cues in the adult nervous system
指导及其他:轴突指导线索在成人神经系统中的作用
- 批准号:
535503-2019 - 财政年份:2020
- 资助金额:
$ 49.9万 - 项目类别:
Postgraduate Scholarships - Doctoral
Guidance and beyond: Role of axon guidance cues in the adult nervous system
指导及其他:轴突指导线索在成人神经系统中的作用
- 批准号:
535503-2019 - 财政年份:2019
- 资助金额:
$ 49.9万 - 项目类别:
Postgraduate Scholarships - Doctoral
Gene expression underlying serotonin axon regrowth in the adult mammalian brain
成年哺乳动物大脑中血清素轴突再生的基因表达
- 批准号:
9765426 - 财政年份:2018
- 资助金额:
$ 49.9万 - 项目类别:
The Role of Neural Activity in Enhancing Axon and Presynaptic Regeneration in the Adult Injured Neocortex In Vivo
神经活动在增强成人损伤新皮质体内轴突和突触前再生中的作用
- 批准号:
MR/P006434/1 - 财政年份:2017
- 资助金额:
$ 49.9万 - 项目类别:
Research Grant
Mechanisms controlling distinct modes of adult axon growth
控制成人轴突生长不同模式的机制
- 批准号:
9750847 - 财政年份:2015
- 资助金额:
$ 49.9万 - 项目类别:
Mechanisms controlling distinct modes of adult axon growth
控制成人轴突生长不同模式的机制
- 批准号:
9010096 - 财政年份:2015
- 资助金额:
$ 49.9万 - 项目类别:
Mechanisms controlling distinct modes of adult axon growth
控制成人轴突生长不同模式的机制
- 批准号:
9333978 - 财政年份:2015
- 资助金额:
$ 49.9万 - 项目类别:
Mechanisms controlling distinct modes of adult axon growth
控制成人轴突生长不同模式的机制
- 批准号:
9129772 - 财政年份:2015
- 资助金额:
$ 49.9万 - 项目类别:
Time lapse imaging of serotonin axon regeneration in the neocortex of adult mouse
成年小鼠新皮质中血清素轴突再生的延时成像
- 批准号:
8429778 - 财政年份:2012
- 资助金额:
$ 49.9万 - 项目类别:
Time lapse imaging of serotonin axon regeneration in the neocortex of adult mouse
成年小鼠新皮质中血清素轴突再生的延时成像
- 批准号:
8537984 - 财政年份:2012
- 资助金额:
$ 49.9万 - 项目类别:














{{item.name}}会员




