Predicting Intracellular Drug Concentrations In The Presence Of Transporters
预测存在转运蛋白的细胞内药物浓度
基本信息
- 批准号:10734908
- 负责人:
- 金额:$ 35.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-15 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsActive Biological TransportAdipocytesArtificial MembranesAutomobile DrivingBindingBlood flowCell Membrane PermeabilityCellsChargeConvectionDataData SetDifferential EquationDiffusionDiscontinuous CapillaryDoseDrug KineticsDrug toxicityEndotheliumEnvironmentEnzymesEquationErythrocytesExcipientsExhibitsFundingGlycocalyxGoalsHeadHepatocyteHouse miceHumanImageIn VitroIntestinesKineticsKnock-outLiteratureLiverMeasuresMembraneMetabolismMethodsMicrodialysisMicrofluidicsMicrosomesModelingMusOralOrganParticle SizePerfusionPermeabilityPharmaceutical PreparationsPinocytosisPlasmaPolysorbate 80ProcessRattusReactionResearchRodentSpecial PopulationSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationTechniquesTestingTimeTissuesTubeWorkabsorptionaqueousbasecost effectivedrug clearancedrug developmentdrug dispositiondrug distributiondrug efficacydrug metabolismexperimental studyextracellularfeedingimprovedin vivomathematical methodsmathematical modelmedication safetynovelpharmacokinetic modelphysiologically based pharmacokineticspolar environmentpredictive modelingpredictive toolsuptake
项目摘要
Project Summary
The overarching goal of the proposed research is to predict the intracellular and extracellular concentration-
time profiles using models that include membrane partitioning, membrane permeability, organ blood flow,
active transport, and metabolism. In the funding period from 2018-2022, we have made significant progress in
developing models to predict drug volume of distribution, and models to predict drug absorption. We have used
the basic principles underlying permeability and partitioning to build a new framework for PBPK models
(termed PermQ). This framework now allows us to incorporate permeability-limited distribution, partitioning,
organ blood flow, and active transport into PBPK models with explicit membrane kinetics. We have started to
build upon our current work to develop novel frameworks to predict drug clearance, a new focus of this
renewal. These new modeling paradigms, together with our time- and distance- dependent continuous
absorption models, will provide markedly better predictions of intracellular concentrations in the presence of
drug metabolizing enzymes and transporters, and will address an unmet critical need for cost effective drug
development by providing novel predictive tools for drug pharmacokinetics in humans.
Three specific aims are proposed. 1) New in vitro and mathematical methods will characterize the time-course
of cellular permeability and partitioning, to inform mechanisms underlying drug distribution, absorption, and
intracellular concentrations that drive drug clearance. Experiments in artificial membrane environments at
various pH values will define the pH partitioning – membrane permeability relationship. In vitro microdialysis
and transwell techniques will capture the time-course of drug partitioning into cells including MDCK, Caco-2,
adipocytes, and hepatocytes. Partitioning into erythrocyte glycocalyx will be measured. Resulting data will be
used as inputs to develop mathematical models to predict drug permeability across single vs. multiple
membranes across a cell, and drug partitioning into membranes. 2) Excipient effects on oral absorption will be
predicted in humans and rodents. Effect of excipient dose-dependent (Polysorbate 80 and PEG400) inhibition
of intestinal drug metabolizing enzymes and transporters (DMETs) will be evaluated with a refined rat intestinal
model. A continuous intestinal mouse absorption model will be developed and refined. The human and rat
intestinal models will be interfaced with species-specific PermQ models. 3) New in vitro and mathematical
methods will improve predictions of drug clearance. Rat data will be collected with microfluidics in hepatocytes
and in vivo, with regional drug quantification with MALDI imaging. Three standard liver models – well-stirred
(WSM), parallel-tube (PTM), and dispersion (DM) – will be evaluated within human and rat PermQ. Enzyme
zonation within the liver sinusoid will be modeled with both literature (discretized) and new partial differential
equation (continuous) methods.
项目摘要
拟议研究的首要目标是预测细胞内和细胞外的浓度-
使用包括膜分割、膜通透性、器官血流量、
主动运输和新陈代谢。在2018-2022年的筹资期间,我们在以下方面取得了重大进展
开发预测药物分布体积的模型,以及预测药物吸收的模型。我们已经使用了
建立新的PBPK模型框架的渗透性和分割的基本原理
(称为PermQ)。这个框架现在允许我们将渗透率受限的分布、分区、
器官血流和主动转运到具有显式膜动力学的PBPK模型。我们已经开始
在我们目前工作的基础上,开发新的框架来预测药物清除率,这是这方面的新重点
更新。这些新的建模范例,以及我们依赖于时间和距离的连续
吸收模型,将提供明显更好的预测细胞内浓度的存在
药物代谢酶和转运体,并将解决对具有成本效益的药物的未得到满足的迫切需求
通过为药物在人类体内的药代动力学提供新的预测工具来开发。
提出了三个具体目标。1)新的体外和数学方法将表征时间过程
细胞渗透性和分配,以告知潜在的药物分布,吸收和机制
推动药物清除的细胞内浓度。在人工膜环境中的实验
不同的pH值将决定pH分配-膜透过率的关系。体外微透析
Transwell技术将捕捉药物分配到细胞中的时间过程,包括MDCK,Caco-2,
脂肪细胞和肝细胞。将测量到红细胞糖萼的分配率。生成的数据将是
用作输入以开发数学模型,以预测药物在单药和多药之间的渗透性
穿过细胞的膜,以及药物分割成膜。2)赋形剂对口服吸收的影响
在人类和啮齿动物身上预测到的。赋形剂(聚山梨酯80和聚乙二醇400)的剂量依赖性抑制作用
肠道药物代谢酶和转运体(DMET)的含量将通过精制的大鼠肠道进行评估
模特。将建立和完善小鼠连续肠道吸收模型。人和老鼠
肠道模型将与特定物种的PermQ模型对接。3)新的体外和数学
这些方法将提高对药物清除的预测。大鼠的数据将通过肝细胞中的微流体收集
在体内,用MALDI成像进行局部药物定量。三种标准肝脏模型-搅拌充分
(WSM)、平行管(PTM)和分散度(DM)-将在人和大鼠PermQ中进行评估。酶
将使用文献(离散化)和新的偏导数来模拟肝窦内的带状结构
方程(连续)方法。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Compartmental models for apical efflux by P-glycoprotein--part 1: evaluation of model complexity.
p-糖蛋白的顶端外排的隔室模型 - 部分:模型复杂性的评估。
- DOI:10.1007/s11095-013-1164-7
- 发表时间:2014-02
- 期刊:
- 影响因子:3.7
- 作者:Nagar, Swati;Tucker, Jalia;Weiskircher, Erica A.;Bhoopathy, Siddhartha;Hidalgo, Ismael J.;Korzekwa, Ken
- 通讯作者:Korzekwa, Ken
ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans.
- DOI:10.1038/clpt.2013.45
- 发表时间:2013-07
- 期刊:
- 影响因子:6.7
- 作者:
- 通讯作者:
Intracellular drug concentrations and transporters: measurement, modeling, and implications for the liver.
- DOI:10.1038/clpt.2013.78
- 发表时间:2013-07
- 期刊:
- 影响因子:6.7
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Ray Korzekwa其他文献
Kenneth Ray Korzekwa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Ray Korzekwa', 18)}}的其他基金
Improving prediction of drug interactions mediated by time-dependent inhibitors
改进对时间依赖性抑制剂介导的药物相互作用的预测
- 批准号:
10463665 - 财政年份:2016
- 资助金额:
$ 35.22万 - 项目类别:
Improving prediction of drug interactions mediated by time-dependent inhibitors
改进对时间依赖性抑制剂介导的药物相互作用的预测
- 批准号:
10263382 - 财政年份:2016
- 资助金额:
$ 35.22万 - 项目类别:
Predicting intracellular drug concentrations in the presence of transporters
预测转运蛋白存在下的细胞内药物浓度
- 批准号:
8420573 - 财政年份:2013
- 资助金额:
$ 35.22万 - 项目类别:
Predicting intracellular drug concentrations in the presence of transporters
预测转运蛋白存在下的细胞内药物浓度
- 批准号:
9978828 - 财政年份:2013
- 资助金额:
$ 35.22万 - 项目类别:
Predicting intracellular drug concentrations in the presence of transporters
预测转运蛋白存在下的细胞内药物浓度
- 批准号:
9755448 - 财政年份:2013
- 资助金额:
$ 35.22万 - 项目类别:
Predicting intracellular drug concentrations in the presence of transporters
预测转运蛋白存在下的细胞内药物浓度
- 批准号:
8811989 - 财政年份:2013
- 资助金额:
$ 35.22万 - 项目类别:
Predicting intracellular drug concentrations in the presence of transporters
预测转运蛋白存在下的细胞内药物浓度
- 批准号:
10224880 - 财政年份:2013
- 资助金额:
$ 35.22万 - 项目类别:
Predicting intracellular drug concentrations in the presence of transporters
预测转运蛋白存在下的细胞内药物浓度
- 批准号:
8605201 - 财政年份:2013
- 资助金额:
$ 35.22万 - 项目类别:
Predicting intracellular drug concentrations in the presence of transporters
预测转运蛋白存在下的细胞内药物浓度
- 批准号:
9595707 - 财政年份:2013
- 资助金额:
$ 35.22万 - 项目类别:














{{item.name}}会员




