Prevention of Relapse in Recurrent Depression with MBCT

通过 MBCT 预防复发性抑郁症复发

基本信息

  • 批准号:
    7413959
  • 负责人:
  • 金额:
    $ 19.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-07-20 至 2010-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): It has been estimated that each new episode of depression increases a patient's cumulative risk for relapse by 16% and those patients who have experienced three or more past depressions are at an elevated risk of staying chronically depressed (Solomon 2000). Patients with recurrent depression are, therefore, a logical group for targeted prevention efforts. To date, the best validated and most widely used approach for preventing relapse in recurrent depression is maintenance medication. However, the protection afforded lasts only as long as patients continue to take their medication. In light of this concern, there has been a growing interest in the use of treatments that combine recovery through medication with psychological prevention of relapse/recurrence (Fava et al., 1998). One such treatment is Mindfulness-Based Cognitive Therapy (MBCT), a group intervention designed to train recovered depressed patients to disengage from mood-linked depressive thinking styles that may trigger relapse/recurrence. While there are preliminary data on MBCT's preventative effects, we do not know how well this treatment fares in comparison with the most pervasive preventive intervention for depression, namely maintenance medication. We plan to identify a sample of 272 recurrently depressed outpatients and, during the acute treatment phase of this study, provide antidepressant medication. Remitted patients will then be randomly assigned to receive either maintenance medication, be withdrawn from medication and receive MBCT or be withdrawn and receive placebo and clinical management. All patients will then be followed for the next eighteen months. Our main hypotheses are that MBCT and maintenance medication will not differ in their efficacy, and that both will outperform placebo and clinical management. We will also perform analyses to examine a possible cognitive mechanism underlying MBCT's effectiveness as well as estimate the relative costs of MBCT compared to maintenance medication for prevention of relapse. Findings from this study would have clear public health significance because MBCT could prove to be an additional effective treatment for recurrently depressed patients who require maintenance courses of treatment to prevent relapse/recurrence.
描述(由申请人提供):据估计,每出现一次新的抑郁症发作,患者的累积复发风险增加16%,那些过去经历过三次或更多抑郁症的患者保持慢性抑郁症的风险增加(所罗门2000)。因此,复发性抑郁症患者是有针对性的预防措施的合乎逻辑的群体。到目前为止,预防复发性抑郁症复发的最有效和最广泛使用的方法是维持药物。然而,这种保护只有在患者继续服药的情况下才能持续。鉴于这一关切,人们对使用将药物康复与心理预防复发/复发相结合的治疗方法越来越感兴趣(Fava等人,1998年)。其中一种治疗方法是基于正念的认知疗法(MBCT),这是一种旨在训练康复的抑郁症患者摆脱可能引发复发/复发的与情绪相关的抑郁思维方式的小组干预。虽然有关于MBCT预防效果的初步数据,但我们不知道这种治疗与最普遍的抑郁症预防干预措施,即维持药物相比,效果如何。我们计划确定272名反复抑郁的门诊患者的样本,并在本研究的急性治疗阶段提供抗抑郁药物。然后,缓解的患者将被随机分配到接受维持药物治疗、停药并接受MBCT或停药并接受安慰剂和临床治疗。所有患者将在接下来的18个月内接受随访。我们的主要假设是,MBCT和维持性药物的疗效不会有什么不同,而且两者的表现都将优于安慰剂和临床治疗。我们还将进行分析,以检查MBCT有效性的可能认知机制,并估计MBCT与用于预防复发的维持药物相比的相对成本。这项研究的结果将具有明显的公共卫生意义,因为MBCT可能被证明是一种额外的有效治疗方法,用于需要维持疗程以防止复发/复发的复发性抑郁症患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zindel Segal其他文献

Zindel Segal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zindel Segal', 18)}}的其他基金

Reducing residual depressive symptoms with web-based Mindful Mood Balance
通过基于网络的正念情绪平衡减少残余抑郁症状
  • 批准号:
    8758265
  • 财政年份:
    2014
  • 资助金额:
    $ 19.09万
  • 项目类别:
Reducing residual depressive symptoms with web-based Mindful Mood Balance
通过基于网络的正念情绪平衡减少残余抑郁症状
  • 批准号:
    9134205
  • 财政年份:
    2014
  • 资助金额:
    $ 19.09万
  • 项目类别:
Increasing Access to Depressive Relapse Prophylaxis with Web-Based MBCT
通过基于网络的 MBCT 增加抑郁症复发预防的机会
  • 批准号:
    8129695
  • 财政年份:
    2010
  • 资助金额:
    $ 19.09万
  • 项目类别:
Increasing Access to Depressive Relapse Prophylaxis with Web-Based MBCT
通过基于网络的 MBCT 增加抑郁症复发预防的机会
  • 批准号:
    8277780
  • 财政年份:
    2010
  • 资助金额:
    $ 19.09万
  • 项目类别:
Increasing Access to Depressive Relapse Prophylaxis with Web-Based MBCT
通过基于网络的 MBCT 增加抑郁症复发预防的机会
  • 批准号:
    7990220
  • 财政年份:
    2010
  • 资助金额:
    $ 19.09万
  • 项目类别:
Prevention of Relapse in Recurrent Depression with MBCT
通过 MBCT 预防复发性抑郁症复发
  • 批准号:
    7069105
  • 财政年份:
    2004
  • 资助金额:
    $ 19.09万
  • 项目类别:
Prevention of Relapse in Recurrent Depression with MBCT
通过 MBCT 预防复发性抑郁症复发
  • 批准号:
    6779441
  • 财政年份:
    2004
  • 资助金额:
    $ 19.09万
  • 项目类别:
Prevention of Relapse in Recurrent Depression with MBCT
通过 MBCT 预防复发性抑郁症复发
  • 批准号:
    6924589
  • 财政年份:
    2004
  • 资助金额:
    $ 19.09万
  • 项目类别:
Prevention of Relapse in Recurrent Depression with MBCT
通过 MBCT 预防复发性抑郁症复发
  • 批准号:
    7559868
  • 财政年份:
    2004
  • 资助金额:
    $ 19.09万
  • 项目类别:
Prevention of Relapse in Recurrent Depression with MBCT
通过 MBCT 预防复发性抑郁症复发
  • 批准号:
    7559900
  • 财政年份:
    2004
  • 资助金额:
    $ 19.09万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.09万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了