Development of serologic test for early risk stratification of islet autoimmunity in genetically predisposed T1D individuals

开发用于遗传易感性 T1D 个体胰岛自身免疫早期风险分层的血清学检测

基本信息

  • 批准号:
    10760885
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Type 1 diabetes (T1D) is a serious multi-factorial chronic autoimmune disease with an annual 3% increase in the incidence rate that constitutes a major public health challenge and financial burden. T1D involves genetic predisposition, immune system response, and environmental factors that lead to disease initiation and progression. Due to the lack of curative therapies for T1D, the most promising option to date remains early intervention with the goal of slowing or preventing progression to T1D in predisposed individuals. Current diagnosis of the pre-clinical T1D stage is based on the detection of islet autoimmunity (IA) against two or more specific antigens, i.e. when the destruction of β-cells has already started and is difficult to reverse. A diagnostic tool predicting the development of islet autoantibodies early in the progression has the potential to avoid the destruction of β-cells altogether by using primary prevention strategies. Here, it is hypothesized that prior to the development of IA there is a distinct humoral immune response against immunogenic pathogen-specific and/or associated non-islet autoimmune targets that can be utilized as early risk stratification for progression to IA. The proposed approach relies on representing an entire binding space of a donor’s circulating antibody repertoire using machine learning models based on the antibody binding profile to a diverse, random library of 126,050 peptides with an average length of 9 amino acids, which is a sparse representation of all possible amino acid combinations. Resulting models are then used to identify pathogen epitopes with high predictive power that are combined into a panel with diagnostic efficacy. The overarching goal of this study is to develop a panel of biomarkers, consisting of potential viral antigens and autoimmune targets for early prediction of islet autoimmunity in genetically susceptible individuals. A broad profiling of the circulating antibody repertoire in patient’s serum combined with machine learning models over time will be used to discover immunogenic targets in both pathogen and human proteomes that can be used as predictors of progression to IA and T1D. The serologic (autoantibody detection), genetic (HLA genotype, point mutations) and clinical data will be used in combination with the immune response profiling data to investigate temporal alterations in humoral immune response at different timepoints of progression to IA. This work is expected to yield data demonstrating the feasibility of a novel immunoassay for early risk stratification of islet autoimmunity development in genetically predisposed T1D individuals. Additionally, it will serve as a demonstration of the antigen discovery approach as a means to identify diagnostic antigens for difficult pathogens.
项目总结/摘要 1型糖尿病(T1 D)是一种严重的多因素慢性自身免疫性疾病,每年增加3% 构成重大公共卫生挑战和财政负担的发病率。T1 D涉及遗传 易感性、免疫系统反应和导致疾病发生的环境因素, 进展由于缺乏T1 D的治愈性疗法,迄今为止最有希望的选择仍然是早期治疗。 干预的目的是减缓或预防易感个体进展为T1 D。电流 临床前T1 D阶段的诊断是基于针对两种或更多种 特异性抗原,即β细胞的破坏已经开始并且难以逆转。诊断 在疾病进展的早期预测胰岛自身抗体的发展的工具有可能避免 通过使用初级预防策略完全破坏β细胞。在这里,假设在 在IA的发展中,存在针对免疫原性病原体特异性和/或免疫原性免疫应答的独特的体液免疫应答。 相关的非胰岛自身免疫靶点,可用作进展为IA的早期风险分层。的 所提出的方法依赖于代表供体循环抗体库的整个结合空间 使用基于抗体结合特征的机器学习模型, 平均长度为9个氨基酸的肽,这是所有可能氨基酸的稀疏表示 组合。然后使用所得模型来鉴定具有高预测能力的病原体表位, 组合成具有诊断功效的面板。这项研究的总体目标是开发一个小组, 生物标志物,由潜在的病毒抗原和自身免疫靶点组成,用于早期预测胰岛 遗传易感个体的自身免疫。一个广泛的分析循环抗体库, 随着时间的推移,患者血清与机器学习模型相结合将用于发现免疫原性靶点 在病原体和人类蛋白质组中,可以用作IA和T1 D进展的预测因子。的 血清学(自身抗体检测)、遗传学(HLA基因型、点突变)和临床数据将用于 结合免疫应答分析数据,研究体液免疫应答的时间变化。 在进展至IA的不同时间点的反应。这项工作预计将产生数据,证明 一种新的免疫测定法用于胰岛自身免疫发展的早期风险分层的可行性 易患T1 D的人此外,它将作为抗原发现方法的演示, 一种鉴定难诊断病原体的诊断抗原的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laimonas Kelbauskas其他文献

Laimonas Kelbauskas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laimonas Kelbauskas', 18)}}的其他基金

Machine learning-based development of serologic test for acute Lyme disease diagnosis
基于机器学习的急性莱姆病诊断血清学检测的开发
  • 批准号:
    10259497
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:

相似海外基金

University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
  • 批准号:
    10073243
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
  • 批准号:
    10752129
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
  • 批准号:
    2339201
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
  • 批准号:
    MR/Y008693/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
  • 批准号:
    23K14783
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant for R&D
PLA2G2D Antibodies for Cancer Immunotherapy
用于癌症免疫治疗的 PLA2G2D 抗体
  • 批准号:
    10699504
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Genetic adjuvants to elicit neutralizing antibodies against HIV
基因佐剂可引发抗艾滋病毒中和抗体
  • 批准号:
    10491642
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Novel Immunogens to Elicit Broadly Cross-reactive Antibodies That Target the Hemagglutinin Head Trimer Interface
新型免疫原可引发针对血凝素头三聚体界面的广泛交叉反应抗体
  • 批准号:
    10782567
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了