Validating the performance and inclusivity of a novel functionally-informed predictive genetic test method for polygenic disease
验证多基因疾病的新型功能信息预测基因测试方法的性能和包容性
基本信息
- 批准号:10759476
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-03 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AfricanAnimal ModelAreaBenchmarkingBusinessesCardiovascular DiseasesClinVarClinicalCodeColorectal CancerData SetDevelopmentDiseaseDisease modelDisparityEast AsianElementsEnhancersEthnic OriginEthnic PopulationEuropeanFoundationsGenesGenetic ScreeningGenomeGoalsHealthHealth InsuranceHealth Insurance Portability and Accountability ActIndividualInsurance CarriersLatinoLife StyleLiteratureMachine LearningMalignant NeoplasmsMalignant neoplasm of prostateMapsMeasuresMedicalMendelian disorderMethodsModelingOutputPerformancePharmaceutical PreparationsPhasePlayPopulationPrevention strategyPreventive healthcareROC CurveResearchResearch PersonnelRiskRoleSamplingSouth AsianSpecificityTechnologyTestingTimeTrainingUntranslated RNAVariantVeterinary MedicineWorkbiobankcardiovascular disorder riskcausal variantdisorder riskdiverse dataexperiencegenetic elementgenetic predictorsgenetic testinggenetic variantgenome annotationgenome-widehuman morbidityhuman mortalityimprovedin silicolearning strategymachine learning modelmachine learning predictionmalignant breast neoplasmmultidisciplinarynovelpolygenic risk scorepredictive modelingrisk mitigationrisk predictionrisk prediction modelscreeningsupervised learningtraitusabilityweb serviceswhole genome
项目摘要
PROJECT SUMMARY
We now know that over 90% of causal variants for common diseases, including cardiovascular disease and
many cancers, lie in non-coding regions of the genome. Therefore, a complete picture of common disease risk
requires analyzing variants across the whole genome, not just the coding genome. Currently available methods
to screen for common disease risk focus on monogenic coding variants and are limited in accuracy, inclusivity,
and interpretability by not incorporating functional whole-genome variants into their training methods and output
interpretation. Thus, there is still an unmet need for the use of systematic whole-genome functional mapping in
building predictive risk models. Drawing on prior research and experience from their time at Harvard, Stanford,
MIT, the Broad Institute, and Mount Sinai, the Martingale Labs, Inc. team has developed the first comprehensive
functionally informed polygenic model for disease risk. This new polygenic prediction model combines the power
of novel genome-wide functional variant annotations with a Bayesian supervised machine learning (ML)
prediction method to improve the accuracy, ethnic inclusivity, and interpretability of predictive genetic tests. The
goal of this Phase I project is to ready Martingale Labs’ whole-genome predictive machine learning
platform for scale by validating and quantifying the model’s predictive accuracy and ethnic inclusivity
as compared to current clinically available methods. These models can be implemented in clinical settings
as predictive genetic tests to help stratify individuals by risk and tailor preventative strategies such as screenings
and preventative medications to minimize disease risk. In this project, we focus on the example of cardiovascular
disease. We will expand the quantification of our model performance to other common diseases in Phase II,
starting with breast, prostate, and colorectal cancer. At the current rate of testing, even with conservative
reimbursement by current health insurers, our proposed genetic testing product could capture an $8 Billion
annual revenue opportunity. Our project involves the development of a new type of deep technology by creating
the first supervised learning models that incorporate functional annotations of the whole genome. This
technology’s use extends beyond medical applications to other novel and useful applications, such as animal
models or veterinary medicine.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tejal Patwardhan其他文献
Tejal Patwardhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




