Roles of allele-specific chromatin interactions in transcription regulation during development

等位基因特异性染色质相互作用在发育过程转录调控中的作用

基本信息

  • 批准号:
    10761821
  • 负责人:
  • 金额:
    $ 24.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-14 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT A fundamental challenge in developmental biology is to dissect how one multipotent cell differentiates into a specific cell type. Most studies are limited to 1-dimensional genomic data that measure transcription level (RNA- seq), protein binding intensity (ChIP-seq), and chromatin accessibility (ATAC-seq). These datasets lack direct evidence of communication between various regulatory elements that accommodate gene regulation and differentiation. To solve this problem, we will leverage cutting-edge 3D genome technologies, ChIA-PET and ChIA-Drop. By enriching for specific protein factors CCCTC binding factor (CTCF) and RNA Polymerase II (RNAPII), one can interrogate chromatin architecture and gene regulation in aggregated bulk cells (ChIA-PET) and in a single molecule (ChIA-Drop). We will exploit the highly dissimilar genomes in F1 hybrid mouse strains derived from mating a laboratory mouse and a wild mouse to assign high-throughput sequencing reads to parental origin, thereby unraveling the allele-specific gene expression and chromatin interactions. We propose to: (i) determine whether allele-specific interactions between regulatory elements and methylation status in mouse embryonic stem cells (mESCs) drive allele-specific gene expression, (ii) quantify cell-to-cell heterogeneity of multiplex chromatin interactions. We will subsequently differentiate mESCs into three lineage-specific precursors ectoderm, mesoderm, and endoderm in vitro. By performing ChIA-PET, we can identify which, if any, of the pre-established interactions among enhancers, promoters, and CTCF persist or vanish after this process. ChIA-Drop data will potentially capture the dynamics therein. Throughout the K99 and R00 phases, we will continue to develop computational algorithms that can: (i) quantitatively assess reproducibility of replicate experiments, (ii) identify statistically significant differential interactions, and (iii) trace and quantify single- molecule dynamics and heterogeneity of allele-specific multiplex interactions. To succeed in these aims, the investigator will expand her knowledge domain to developmental biology and receive additional hands-on experimental training in 3D genome mapping technologies and mouse embryonic stem cell culture, harvest, and differentiation techniques. Together, these genome-wide communication links between regulatory elements and architectural protein will provide insights into gene regulation and genomic imprinting mechanisms during gastrulation.
项目总结/摘要 发育生物学的一个基本挑战是剖析一个多能细胞如何分化成一个 特定细胞类型。大多数研究仅限于测量转录水平(RNA-1)的一维基因组数据。 seq)、蛋白结合强度(ChIP-seq)和染色质可及性(ATAC-seq)。这些数据集缺乏直接的 调节基因调节的各种调节元件之间的通信的证据, 分化为了解决这个问题,我们将利用尖端的3D基因组技术,ChIA-PET和 ChIA-Drop。通过富集特异性蛋白因子CCCTC结合因子(CTCF)和RNA聚合酶II (RNAPII),人们可以询问聚集体细胞中的染色质结构和基因调控(ChIA-PET)。 和在单个分子中(ChIA-Drop)。我们将利用F1杂交小鼠品系中高度不相似的基因组 通过将实验室小鼠和野生小鼠交配以将高通量测序读数分配给 亲本起源,从而解开等位基因特异性基因表达和染色质相互作用。我们提出 目的:(i)确定是否存在调节元件和甲基化状态之间的等位基因特异性相互作用, 小鼠胚胎干细胞(mESC)驱动等位基因特异性基因表达,(ii)量化细胞间异质性 多重染色质相互作用。随后,我们将mESCs分为三个谱系特异性 前体外胚层、中胚层和内胚层。通过进行ChIA-PET,我们可以识别哪些,如果有的话, 增强子、启动子和CTCF之间预先建立的相互作用在此过程后持续或消失。 ChIA-Drop数据将潜在地捕获其中的动态。在K99和R 00阶段,我们将 继续开发计算算法,可以:(i)定量评估重复的再现性 实验,(ii)识别统计上显著的差异相互作用,以及(iii)跟踪和量化单个 等位基因特异性多重相互作用的分子动力学和异质性。为了实现这些目标, 研究员将扩展她知识领域到发育生物学,并接受额外的实践 3D基因组图谱技术和小鼠胚胎干细胞培养,收获, 分化技术。总之,这些调控元件之间的基因组范围的通信联系, 建筑蛋白质将提供深入了解基因调控和基因组印记机制, 原肠胚形成

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minji Kim其他文献

Minji Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minji Kim', 18)}}的其他基金

Roles of allele-specific chromatin interactions in transcription regulation during development
等位基因特异性染色质相互作用在发育过程转录调控中的作用
  • 批准号:
    10343821
  • 财政年份:
    2021
  • 资助金额:
    $ 24.59万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 24.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了