A Framework for mHealth App Security and Privacy Analysis
移动医疗应用程序安全和隐私分析框架
基本信息
- 批准号:10760047
- 负责人:
- 金额:$ 78.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAndroidAppleAppointments and SchedulesAreaAwarenessBehaviorBusinessesCellular PhoneCodeCollaborationsComputer softwareDataData SecurityDedicationsDevelopmentDevicesEffectivenessEnvironmentEvaluationFDA approvedGuidelinesHealthHealth Insurance Portability and Accountability ActHealth PersonnelHealth protectionHealthcareInternationalJavaKnowledgeLanguageLinkMarketingMedicalMedical HistoryMedical RecordsMethodsMobile Health ApplicationMonitorNamesOnline SystemsOutcomePatientsPerformancePhasePlayPlug-inPoliciesPrivacyPrivatizationProbabilityProductionProgramming LanguagesProtocols documentationProviderPythonsRegulationReproductionResearchResearch PersonnelRiskSample SizeSecureSecuritySideSmall Business Technology Transfer ResearchSource CodeTechniquesTestingUnited States Centers for Medicare and Medicaid ServicesUniversitiesVendorcomputerized data processingdata communicationdata exchangedata interoperabilitydata sharingelectronic health record systemencryptionevaluation/testinghandheld mobile devicehealth dataimprovedmHealthmobile applicationnon-compliancepreventprototyperemote health caresealsensorsmartphone applicationsuccesssupply chainsupport toolstooltransmission processvirtualweb based interfaceweb site
项目摘要
PROJECT SUMMARY/ABSTRACT
With the increased use of mobile health (mHealth) apps to improve health outcomes, protecting
private health data is becoming increasingly important. These mHealth apps are offered by
healthcare providers and used by patients for various reasons such as paying bills, scheduling
appointments, sending messages to providers, accessing lab results, and viewing prescriptions
and medical records. With patients’ increasing desire for data accessibility and app data sharing,
it is critical to ensure that patients transmit their Protected Health Information (PHI) to apps that
comply with HIPAA privacy and security regulations. Unfortunately, about 25% of healthcare
providers suffer from data breaches violating HIPAA policies caused by using mobile devices that
come with mHealth apps. These breaches result in lawsuits and loss of confidence among health
providers and patients. Earlier research has focused on mobile device security but has not
checked further how apps store or transfer data securely before being used by remote healthcare
providers or users. A total of 303,867 complaints have been received in the HHS.gov until July
2022 [95], which indicates that most developers, including mHealth apps developers, are unaware
of HIPAA security and privacy regulations. This creates the market opportunity to develop static
and dynamic code analysis tools for mHealth app developers, so their developed products meet
HIPAA security and privacy guidelines. Currently, there is a lack of an analysis framework to
check mHealth apps’ security and privacy risks following the applicable HIPAA technical security
and privacy guidelines. We have developed a framework to analyze mHealth apps for HIPAA
security and privacy compliance for Android. The tool is available both as a web-based interface
for users without knowledge of HIPAA or app security and as a plugin with Android Studio to
enable health app developers to test source code for potential data security breaches related to
HIPAA before posting to the marketplace. In addition, the tool addresses API level checking for
secure data communication mandated by recent Centers for Medicare & Medicaid Services
(CMS) guidelines between third-party mobile health apps and EHR systems. The analysis
framework also addresses heterogeneous health data and enables providers to comply with
HIPAA administrative and operational guidelines. We have performed two acceptance tests on
the prototype based on partnering with HIPAA experts, medical doctors, and for-profit EHR
vendors along with the effectiveness of tools for detecting health data security breaches. In Phase
II, we propose a commercial product mSPAiOS as a mHealth HIPAA checker by extending the
framework for iOS mHealth apps security and privacy assessment, plugin support for xCode
environment, and performance evaluation of the product by at least 3 for-profit organizations/EHR
vendors. The proposed tool has the potential to capture the market of the HIPAA-compliant
assessment as a unique product that is not provided by any existing tools.
项目总结/摘要
随着越来越多地使用移动的健康(mHealth)应用程序来改善健康结果,
私人健康数据正变得越来越重要。这些mHealth应用程序由
医疗保健提供者和患者出于各种原因使用,例如支付账单、调度
预约、向提供者发送消息、访问实验室结果和查看处方
和医疗记录随着患者对数据可访问性和应用程序数据共享的需求不断增加,
确保患者将其受保护的健康信息(PHI)传输到
遵守HIPAA隐私和安全法规。不幸的是,大约25%的医疗保健
提供商遭受违反HIPAA政策的数据泄露,这些数据泄露是由于使用移动的设备造成的,
移动健康应用这些违规行为导致诉讼和对健康的信心丧失
供应商和患者。早期的研究主要集中在移动终端安全上,
进一步检查了应用程序在被远程医疗保健使用之前如何安全地存储或传输数据
供应商或用户。截至7月,HHS.gov共收到303,867起投诉
2022 [95],这表明大多数开发人员,包括mHealth应用程序开发人员,都不知道
HIPAA安全和隐私法规。这就创造了静态发展的市场机会
和动态代码分析工具的mHealth应用程序开发人员,使他们开发的产品满足
HIPAA安全和隐私准则。目前,缺乏一个分析框架,
根据适用的HIPAA技术安全检查mHealth应用程序的安全和隐私风险
和隐私准则。我们已经开发了一个框架来分析移动健康应用程序的HIPAA
Android的安全和隐私合规性。该工具既可以作为基于Web的界面,
对于不了解HIPAA或应用程序安全性的用户,作为Android Studio的插件,
使健康应用程序开发人员能够测试源代码,以发现与以下内容相关的潜在数据安全漏洞:
在发布到市场之前,先进行HIPAA。此外,该工具还解决了API级别的检查,
最近的医疗保险和医疗补助服务中心要求的安全数据通信
(CMS)第三方移动的健康应用程序和EHR系统之间的指导方针。分析
框架还解决了异构健康数据,使供应商能够遵守
HIPAA管理和操作指南。我们已经进行了两次验收测试,
该原型基于与HIPAA专家、医生和营利性EHR的合作
供应商沿着的有效性的工具,用于检测健康数据的安全漏洞。同相
第二,我们提出了一个商业产品mSPAiOS作为mHealth HIPAA检查器,通过扩展
iOS mHealth应用程序安全和隐私评估框架,xCode插件支持
环境,以及至少3个营利性组织/EHR对产品的性能评估
厂商拟议的工具有可能抓住市场的健康保险责任法案兼容
评估是一种独特的产品,任何现有工具都无法提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheikh Iqbal Ahamed其他文献
Mobile Application-Based Solution for Building Accessibility Assessment for Comprehensive and Personalized Assessment
基于移动应用程序的解决方案,用于构建全面和个性化评估的无障碍评估
- DOI:
10.1109/compsac57700.2023.00260 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sayeda Farzana Aktar;M. Drake;Kazi Shafiul Alami;Laryn Michele O'Donnell;Shiyu Tian;Rosalind Smith;Sheikh Iqbal Ahamed - 通讯作者:
Sheikh Iqbal Ahamed
iPeer: A Sociotechnical Systems Approach for Helping Veterans with Civilian Reintegration
iPeer:帮助退伍军人重返平民社会的社会技术系统方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Rizwana Rizia;Zeno Franco;Katinka Hooyer;Nadiyah Johnson;A. Patwary;G. Ahsan;Bob Curry;M. Flower;Sheikh Iqbal Ahamed - 通讯作者:
Sheikh Iqbal Ahamed
Reality Versus Grant Application Research “Plans”
现实与拨款申请研究“计划”
- DOI:
10.1177/1524839917700892 - 发表时间:
2018 - 期刊:
- 影响因子:1.9
- 作者:
L. Burhansstipanov;L. Krebs;D. Petereit;M. Dignan;Sheikh Iqbal Ahamed;Michele Sargent;K. Cina;K. Crawford;Doris Thibeault;S. Bordeaux;S. Kanekar;G. Ahsan;Dr. Williams;Ivor D. Addo - 通讯作者:
Ivor D. Addo
Collaborative Design with Veterans: Identifying challenges of designing mhealth solution for veterans
与退伍军人协作设计:确定为退伍军人设计移动医疗解决方案的挑战
- DOI:
10.1109/healthcom.2015.7454526 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Rizwana Rizia;Zeno Franco;Nadiyah Johnson;Katinka Hooyer;A. Patwary;G. Ahsan;M. Flower;Bob Curry;Sheikh Iqbal Ahamed - 通讯作者:
Sheikh Iqbal Ahamed
ETS (Efficient, Transparent, and Secured) Self-healing Service for Pervasive Computing Applications
适用于普适计算应用的 ETS(高效、透明、安全)自我修复服务
- DOI:
10.6633/ijns.200705.4(3).05 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Shameem Ahmed;Moushumi Sharmin;Sheikh Iqbal Ahamed - 通讯作者:
Sheikh Iqbal Ahamed
Sheikh Iqbal Ahamed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheikh Iqbal Ahamed', 18)}}的其他基金
A Framework for mHealth App Security and Privacy Analysis
移动医疗应用程序安全和隐私分析框架
- 批准号:
10325277 - 财政年份:2021
- 资助金额:
$ 78.88万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 78.88万 - 项目类别:
Research Grant