Gene Coexpression Network Regulating Repetitive Behavior under Nutritional Change.
营养变化下调节重复行为的基因共表达网络。
基本信息
- 批准号:10737180
- 负责人:
- 金额:$ 40.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-25 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsAnimal GeneticsAnimal ModelAnimalsBehaviorBehavioralBiological ModelsBlood GlucoseBrainCRISPR/Cas technologyCarbohydratesChronic stressComplexCorpus striatum structureDataData AnalysesData SetDevelopmentDietary InterventionDimensionsDiseaseDisease modelEnvironmentEnvironmental ImpactExhibitsExperimental ModelsExposure toFishesFoundationsFutureGene ExpressionGenesGeneticGenetic VariationGenomeGenomicsGoalsHeterogeneityHumanImmediate-Early GenesInbred MouseInvoluntary MovementsKetone BodiesKetosesKetosisKnowledgeMammalsMapsMental disordersMetabolicMethodsMexicanModelingModernizationMolecularMorphologyMusNervous System PhysiologyNeural PathwaysNeuronsNutritionalOutputPathway interactionsPatientsPeriodicityPhysiologicalPopulationPopulation HeterogeneityPropertyQuantitative Trait LociRecording of previous eventsReducing dietRegulator GenesResearchSensorySerumSignal TransductionSocial BehaviorStandard ModelStereotypingStressSurfaceSystemTechniquesTechnologyTestingVariantVisualizationWild Animalsbehavior predictiondistractioneffective therapyindividual variationinnovationinsightketogenic dietmating behaviormetabolomicsmodel organismmultidimensional dataneuralneuromechanismnull mutationnutritionopen dataprogramsrepetitive behaviorresponsesocial learningsuccessteleost fishtranscriptometranscriptomics
项目摘要
Stereotypic repetitive behaviors, which are thought to be an obstacle to complex task execution,
including social behaviors and learning, are observed in mammalians and fish. Animals exposed to stress-
associated environment frequently exhibit repetitive behaviors. Chronic stress is known to change the
neurocircuit property and increase the blood glucose level. Accordingly, the low-carbohydrate ketogenic diet
reduced repetitive behaviors in disorder model animals. However, there is a significant knowledge gap
regarding how repetitive behaviors are particularly selected among other voluntary behaviors; is it based on
neurocircuit and/or metabolic changes? Whether natural genetic variations promote an increase or decrease
in repetitive behavior level is also poorly understood. Consequently, our central hypothesis is that, in an
experimental system relevant to typical heterogeneity, nutritional ketosis reduces repetitive behavior by
modifying the known dopaminergic and GABAergic signaling that choose the behavior modules (e.g.,
repetitive behavior, mating behavior, etc.). To provide the foundation to test this hypothesis, this project’s
main objective is to identify the gene coexpression regulatory network and its hub genes that reduce
repetitive behavior under ketosis. The Mexican teleost fish Astyanax mexicanus will be strategically chosen
as an experimental model, which consists of cave-dwelling (cavefish) and surface-dwelling fish (surface fish).
The cavefish display asocial behaviors and exhibit 1,839 of the shared directional gene expression changes
seen in human disorders related to repetitive behavior. This project’s rationale is that the genetic and
environmental impacts on repetitive behavior with the naturalistic heterogeneity are easy to study on our
animal platform, yielding the basic knowledge for neuronal and cellular responses to ketosis associated with
repetitive behavior. The research proposed in this application is innovative because it will use naturally
heterogeneous populations whose genetic and behavioral conditions are similar to patients with psychiatric
disorders. This project will also integrate omics data with the aid of an emerging clustering algorithm,
topological data analysis (TDA). TDA is robust for noisy and sparse datasets while retaining individual
variations that may be lost using typical dimension-reduction algorithms. This study is significant because it
promises to provide the first insights into the genetic basis of the nutritional plasticity of repetitive behavior,
which will foremost contribute to the future understanding of the neural and cellular responses governed by
nutritional interventions. Furthermore, the knowledge derived from this R01 project will be applied to the
murine system in the future to test if it is translational. The success of this test will support a conserved
pathway among heterogeneous populations in our fish, and between fish and mammals, opening the door to
human application of this knowledge.
刻板的重复行为被认为是执行复杂任务的障碍,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Motoko Iwashita其他文献
Motoko Iwashita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 40.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 40.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 40.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 40.35万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 40.35万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 40.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 40.35万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 40.35万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 40.35万 - 项目类别:
Standard Grant