Mechanisms of Klebsiella pneumoniae gastrointestinal colonization
肺炎克雷伯菌胃肠道定植机制
基本信息
- 批准号:10736879
- 负责人:
- 金额:$ 55.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-14 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAntibiotic ResistanceArginineBiologicalBiological AssayBypassCatabolismCell membraneCellular MembraneDataDevelopmentDietDiseaseEthanolaminesFailureFecesGastrointestinal tract structureGenesGenetic ScreeningGnotobioticGram-Negative BacteriaImmune systemImmunocompetentIn VitroInfectionInflammatoryInvestigationKineticsKlebsiella pneumoniaeKnock-outKnowledgeLibrariesLinkMetabolic PathwayMetabolismMetagenomicsModelingMolecularMucous MembraneMulti-Drug ResistanceMusNosocomial InfectionsNutrientNutritionalOperonOralOropharyngealOutcomePathway interactionsPatientsPreventionProcessRegulationRoleRouteSiteSourceSystemburden of illnesscolonization resistancecombatdiarrheal diseasedigitaldrug resistant pathogenenteric pathogenepidemiology studyfitnessgastrointestinalgene productgenomic locusgut colonizationgut microbiomegut microbiotahost colonizationin vivoinsightmembermetabolomicsmetagenomemetagenomic sequencingmicrobiomemicrobiome componentsmicrobiotamicroorganismmouse modelmutantnovelpathogenpathogenic bacteriapublic health relevancesuccesstransmission processuptake
项目摘要
Abstract
Hospital-acquired infections (HAI) resulting from the transmission of drug-resistant pathogens affect hundreds
of millions of patients worldwide. Klebsiella pneumoniae (Kpn), a gram-negative bacterium, is notorious for
causing HAI, with many of these infections difficult to treat as Kpn has become multi-drug resistant.
Epidemiological studies suggest that gastrointestinal (GI) colonization of Kpn is a major reservoir through
which Kpn can cause disease manifestations either in the colonized host or transmit from host to host. This site
of Kpn colonization has not been the focus of previous studies as a tractable model of Kpn GI colonization, and
host-to-host transmission did not exist. We have recently developed a murine model that allows for the study
of Kpn mucosal (oropharynx and GI) colonization, shedding within feces, and transmission through the fecal-oral
route. Using an oral route of inoculation and fecal shedding as a marker for GI colonization, we show
that Kpn can asymptomatically colonize the GI tract of immunocompetent mice and modifies the host GI
microbiota. We premise that specific Kpn genes contribute to its GI colonization, and the products of these genes
could serve as novel targets for the prevention of the establishment of GI colonization. More recently, we used
our murine model to screen a library of Kpn random transposon mutants (In-seq) to identify the complete set of
“GI colonization” genes from a single isolate. A metagenomics sequencing analysis further identified bacterial
species and the metabolic pathways affected by Kpn in the GI tract. Herein, we will focus on two sets of pathways
identified through In-seq whose products allow Kpn to overcome colonization resistance provided by the resident
gut microbiota. Thus, in Aim#1, we will focus on the ethanolamine utilization pathway genes (eut) of Kpn that
allow it to utilize ethanolamine (EA), a byproduct of cellular membranes and diet in the gut that can serve as an
alternative nutrient source. Unlike many other enteric pathogens that contain a single eut operon, Kpn has two
genetically distinct eut operons. We will identify the role of each eut locus in EA metabolism and determine the
underlying molecular mechanism through which EA metabolism provides Kpn with a fitness advantage against
members of the microbiome. Aim#2 will take a different approach by focusing on the contact-dependent killing
machinery of the Kpn (Type 6 secretion system [T6SS]) in overcoming colonization resistance provided by the
resident microbiota. We will focus on the unique regulatory mechanism that modulates the expression
of Kpn T6SS in the GI tract and provide it with a selective and competitive advantage against the resident gut
microbiota. Results from these studies would provide us with a fundamental understanding of the molecular
mechanisms involved in the establishment of GI colonization by an incoming pathogen. These studies will also
lay the groundwork for developing potential strategies to reduce the Kpn disease burden.
摘要
由耐药病原体传播引起的医院获得性感染(HAI)影响数百人,
全世界数百万患者。肺炎克雷伯氏菌(Kpn)是一种革兰氏阴性菌,
导致HAI,其中许多感染难以治疗,因为Kpn已成为多药耐药。
流行病学研究表明,胃肠道(GI)定植的Kpn是一个主要的水库,通过
该Kpn可在定殖宿主中引起疾病表现或在宿主间传播。本网站
Kpn定殖并不是以前研究的重点,因为Kpn GI定殖的易处理模型,
主机到主机传输不存在。我们最近开发了一种小鼠模型,
Kpn粘膜(口咽和GI)定植、粪便内脱落和经粪-口传播
路线使用口服接种途径和粪便脱落作为GI定植的标志,我们发现
Kpn可以无症状地定殖于免疫活性小鼠的胃肠道,并改变宿主的胃肠道
微生物群我们假设特定的Kpn基因有助于其GI定植,并且这些基因的产物
可以作为新的目标,防止建立GI殖民。最近,我们使用
我们的鼠模型筛选Kpn随机转座子突变体文库(In-seq),以鉴定完整的Kpn转座子突变体组。
来自单个分离物的“GI定植”基因。宏基因组测序分析进一步鉴定了细菌
种属和胃肠道中受Kpn影响的代谢途径。在此,我们将重点介绍两组途径
通过In-seq识别,其产品允许Kpn克服居民提供的殖民抵抗力
肠道微生物群因此,在目标#1中,我们将关注Kpn的乙醇胺利用途径基因(eut),
允许它利用乙醇胺(EA),这是肠道中细胞膜和饮食的副产品,可以作为一种
替代营养源。与许多其他含有单个eut操纵子的肠道病原体不同,Kpn具有两个eut操纵子。
遗传上不同的eut操纵子。我们将确定每个eut基因座在EA代谢中的作用并确定
潜在的分子机制,通过它EA代谢提供Kpn与健身优势,
微生物组的成员。目标2将采取不同的方法,重点关注接触依赖性杀伤
Kpn(6型分泌系统[T6 SS])的机制,以克服殖民抵抗提供的
常驻微生物群我们将集中在独特的调节机制,调节表达
的Kpn T6 SS在胃肠道,并提供了一个选择性和竞争优势,对居民肠道
微生物群这些研究的结果将为我们提供对分子生物学的基本理解。
通过引入的病原体建立GI定殖的机制。这些研究还将
为制定减少Kpn疾病负担的潜在战略奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muhammad Ammar Zafar其他文献
Muhammad Ammar Zafar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muhammad Ammar Zafar', 18)}}的其他基金
Biology of hypervirulent Klebsiella pneumoniae translocation from the gastrointestinal tract
高毒力肺炎克雷伯菌从胃肠道易位的生物学
- 批准号:
10515338 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Biology of hypervirulent Klebsiella pneumoniae translocation from the gastrointestinal tract
高毒力肺炎克雷伯菌从胃肠道易位的生物学
- 批准号:
10354624 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Determining the mechanisms by which YesMN drives pneumococcal host-to-host transmission
确定 YesMN 驱动肺炎球菌主机间传播的机制
- 批准号:
10186702 - 财政年份:2020
- 资助金额:
$ 55.83万 - 项目类别:
Determining the mechanisms by which YesMN drives pneumococcal host-to-host transmission
确定 YesMN 驱动肺炎球菌主机间传播的机制
- 批准号:
10041178 - 财政年份:2020
- 资助金额:
$ 55.83万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 55.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




