Machine Learning Phenotypic De Novo Drug Design

机器学习表型从头药物设计

基本信息

  • 批准号:
    10762633
  • 负责人:
  • 金额:
    $ 49.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The high rate of failure in CNS drug discovery, in particular of the first-in-class therapeutics with new modes of action, highlights a clear unmet need to improve the success rate in drug discovery for psychiatric disorders. One well-known issue is the poor ability of current bioassays and animal models to predict the efficacy and side- effects of compounds. Another important issue is the lack of clear targets for CNS disorders, which are complex and require polypharmacology. Phenotypic screening platforms are well-suited for drug discovery of compounds in a target-agnostic manner, allowing for the discovery and development of poly pharmacological agents. Suitable proven in vivo phenotypic screens, however, are rare with the exception of PsychoGenics SmartCube® platform, which has been used to screened ~8000 compounds and reference drugs. Compound availability for phenotypic screening, however, restrict discovery to known chemical spaces. Novel machine learning methods are now available to design novel drugs that can be used to poke unexplored chemical spaces. The combination of a machine learning model capturing structure-to-phenotype relationships and a model that can generate novel drug-like compounds promises to deliver a truly novel platform. Our aims therefore are 1) to generate a structure- to-phenotype machine learning model (“PhenCheML”) using our collection of more than 8000 compounds and drugs screened in Psychogenics’ SmartCube® phenotypic in vivo platform, and 2) to combine such model with Collaboration Pharma de novo drug design generative machine learning model MegaSyn®, and generate novel CNS drug-like compounds for testing in vivo. The success of this Phase I SBIR project will result in PhenCheML, a novel phenotypic machine learning-based drug discovery platform that can generate novel chemotypes and predict their therapeutic value. If our Phase I project is successful, we will extend it in a Phase II application through the design and synthesis of novel molecules for test in SmartCube® and validation in second tier assays focusing on psychiatric disorders (depression, anxiety, psychosis, and bipolar disorder). We will also explore the use of the platform for generation of novel compounds with potential therapeutic effects in model systems of psychiatric, neurodevelopmental, and neurodegenerative disease (e.g., Rett, ASD, HD, PD, etc). If successful, this platform will be an innovative and unique drug design method, offered by as fee-for-service or used in drug development by PGI and its partners.
项目总结 中枢神经系统药物发现的高失败率,特别是具有新模式的一流治疗方法 行动,突出了提高精神疾病药物发现成功率的明显未得到满足的需要。 一个众所周知的问题是,目前的生物检测和动物模型预测疗效和副作用的能力很差。 化合物的影响。另一个重要问题是缺乏针对中枢神经系统疾病的明确靶点,这些疾病是复杂的 并且需要多种药理学。表型筛选平台非常适合化合物的药物发现 以靶标不可知的方式,允许发现和开发多种药理制剂。 然而,合适的经过体内验证的表型筛选是罕见的,除了SquchoGenics SmartCube 该平台已用于筛选~8000种化合物和参比药物。的复合可用性 然而,表型筛选将发现限制在已知的化学空间。新的机器学习方法 现在可以用来设计新型药物,这些药物可以用来戳破未被探索的化学空间。组合在一起 一种捕获结构-表型关系的机器学习模型,以及一种可以生成新的 类药物化合物有望提供一个真正新颖的平台。因此,我们的目标是1)生成一个结构- To-表型机器学习模型(“PhenCheML”)使用我们收集的8000多个化合物和 在Sprgenics的SmartCube®体内表型平台中筛选的药物,以及2)将该模型与 协作Pharma de nevo药物设计生成性机器学习模型MegaSyn®,并生成新的 用于体内测试的中枢神经系统类药物化合物。第一阶段SBIR项目的成功将导致PhenCheML, 一种新的基于表型机器学习的药物发现平台,可以产生新的化学类型和 预测它们的治疗价值。如果我们的第一阶段项目成功,我们将在第二阶段应用程序中扩展它 通过设计和合成用于在SmartCube®中测试和在第二层测试中验证的新分子 专注于精神障碍(抑郁、焦虑、精神病和双相情感障碍)。我们还将探索 利用该平台生成具有潜在治疗作用的新化合物的模型系统 精神、神经发育和神经退行性疾病(例如,Rett、ASD、HD、PD等)。如果成功, 该平台将是一种创新的、独特的药物设计方法,无论是作为收费服务提供还是在药物中使用 PGI及其合作伙伴的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniela Brunner其他文献

Daniela Brunner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniela Brunner', 18)}}的其他基金

Predictive Smoking Cessation Preclinical Battery
预测性戒烟临床前电池
  • 批准号:
    8455421
  • 财政年份:
    2012
  • 资助金额:
    $ 49.99万
  • 项目类别:
Higher Throughput Behavioral Screening of Cognitive
更高吞吐量的认知行为筛查
  • 批准号:
    7054033
  • 财政年份:
    2006
  • 资助金额:
    $ 49.99万
  • 项目类别:
Higher Throughput Behavioral Screening of Cognitive Enhancers
认知增强剂的更高通量行为筛选
  • 批准号:
    7169555
  • 财政年份:
    2006
  • 资助金额:
    $ 49.99万
  • 项目类别:
Animal Models of Schizophrenia: NRG-erbB Function
精神分裂症动物模型:NRG-erbB 功能
  • 批准号:
    6855763
  • 财政年份:
    2004
  • 资助金额:
    $ 49.99万
  • 项目类别:
Animal Models of Schizophrenia: NRG-erbB Function
精神分裂症动物模型:NRG-erbB 功能
  • 批准号:
    6737260
  • 财政年份:
    2004
  • 资助金额:
    $ 49.99万
  • 项目类别:
Wolframin gene ablation in mice as a model for human men
小鼠中的 Wolframin 基因消融作为人类男性的模型
  • 批准号:
    6710124
  • 财政年份:
    2003
  • 资助金额:
    $ 49.99万
  • 项目类别:
Spinal Cord Injury: Automatic Scoring of Motor Function
脊髓损伤:运动功能自动评分
  • 批准号:
    6695163
  • 财政年份:
    2003
  • 资助金额:
    $ 49.99万
  • 项目类别:
Wolframin gene ablation in mice as a model for human men
小鼠中的 Wolframin 基因消融作为人类男性的模型
  • 批准号:
    6584502
  • 财政年份:
    2003
  • 资助金额:
    $ 49.99万
  • 项目类别:
Highthroughput analysis of behavior for CNS applications
CNS 应用行为的高通量分析
  • 批准号:
    6751402
  • 财政年份:
    2002
  • 资助金额:
    $ 49.99万
  • 项目类别:
Highthroughput analysis of behavior for CNS applications
CNS 应用行为的高通量分析
  • 批准号:
    6777491
  • 财政年份:
    2002
  • 资助金额:
    $ 49.99万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 49.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了